【題目】已知x0,x0+
是函數(shù)f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的兩個相鄰的零點
(1)求
的值;
(2)若對任意
,都有f(x)﹣m≤0,求實數(shù)m的取值范圍.
(3)若關(guān)于
的方程
在
上有兩個不同的解,求實數(shù)
的取值范圍.
【答案】(1)
(2)
(3)![]()
【解析】試題分析:(1)利用三角恒等變形,對原函數(shù)進行化簡變形,可得
,由兩相鄰零點可得函數(shù)最小正周期,再利用最小正周期與
的關(guān)系可得函數(shù)表達式,將
代入可得其值;(2)實數(shù)
的取值范圍可轉(zhuǎn)化為求函數(shù)
在
的最大值問題,利用三角函數(shù)的性質(zhì)可得結(jié)果;(3)類比第二小題,利用分離變量求出
的取值范圍,結(jié)合圖象可知與
有兩交點時
的范圍.
試題解析:(1)f(x)=
=![]()
=
=![]()
=
(
)=
.
由題意可知,f(x)的最小正周期T=π,
∴
, 又∵ω>0, ∴ω=1,
∴f(x)=
.
∴
=
.
(2)由f(x)﹣m≤0得,f(x)≤m, ∴m≥f(x)max,
∵﹣
, ∴
, ∴
,
∴﹣
≤
, 即f(x)max=
,
∴
所以
(3)原方程可化為![]()
即
![]()
畫出
的草圖
x=0時,y=2sin
=
,
y的最大值為2,
∴要使方程在x∈[0,
]上有兩個不同的解,
即
≤m+1<2, 即
﹣1≤m<1. 所以![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓C:
的左右焦點分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點.O為坐標(biāo)原點.
(1)若直線l過點F1,且|AB|=
,求k的值;
(2)若以AB為直徑的圓過原點O,試探究點O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
過定點A,該點也在拋物線
上,若拋物線與圓
有公共點P,且拋物線在P點處的切線與圓C也相切,則圓C上的點到拋物線的準(zhǔn)線的距離的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)消費者心理學(xué)的研究,商品的銷售件數(shù)與購買人數(shù)存在一定的關(guān)系,商家可以根據(jù)此調(diào)整相應(yīng)的商品小手策略,以謀求商品更多銷量,從而獲取更多利潤.某商場對購買人數(shù)和銷售件數(shù)進行了統(tǒng)計對比,得到如下表格:
人數(shù) | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數(shù) | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(參考公式:
,
)
(1)以每天進店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫出散點圖:
![]()
(2)根據(jù)(1)中所繪制的散點圖,可得出購買人數(shù)與商品銷售件數(shù)存在怎樣的關(guān)系?并求出回歸直線方程;(結(jié)果保留到小數(shù)點后兩位)
(3)預(yù)測當(dāng)進店人數(shù)為80人時,商品銷售的件數(shù).(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:
方案①:以
為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;
方案②:以
為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與
或
垂直)作為正四棱柱的兩個底面.
(1)設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設(shè)
的長為
dm,則當(dāng)
為多少時,能使按方案②制成的正四棱柱的體積最大?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,AE垂直于平面
,
,
,點F為平面ABC內(nèi)一點,記直線EF與平面BCE所成角為
,直線EF與平面ABC所成角為
.
![]()
Ⅰ
求證:
平面ACE;
Ⅱ
若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
按如下規(guī)律分布(其中
表示行數(shù),
表示列數(shù)),若
,則下列結(jié)果正確的是( )
第1列 | 第2列 | 第3列 | 第4列 | … | ||
第1行 | 1 | 3 | 9 | 19 | 33 | |
第2行 | 7 | 5 | 11 | 21 | ||
第3行 | 17 | 15 | 13 | 23 | ||
第4行 | 31 | 29 | 27 | 25 | ||
┇ |
A.
,
B.
,
C.
,
D.
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量
,
滿足:|
|=2,|
|=1.
(1)若(
2
)(
)=1,求![]()
的值;
(2)設(shè)向量
,
的夾角為θ.若存在t∈R,使得
,求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)
(
為常數(shù))的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求
的值及函數(shù)
的極值;
(2)證明:當(dāng)
時,![]()
(3)證明:對任意給定的正數(shù)
,總存在
,使得當(dāng)
時,恒有![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com