【題目】已知F1 , F2分別為雙曲線C:
﹣
=1的左、右焦點,若存在過F1的直線分別交雙曲線C的左、右支于A,B兩點,使得∠BAF2=∠BF2F1 , 則雙曲線C的離心率e的取值范圍是( ) ![]()
A.(3,+∞)
B.(1,2+
)
C.(3,2+
)
D.(1,3)
科目:高中數學 來源: 題型:
【題目】在直角△ABC中,∠ACB=30°,∠B=90°,D為AC中點(左圖),將∠ABD沿BD折起,使得AB⊥CD(右圖),則二面角A﹣BD﹣C的余弦值為( ) ![]()
A.﹣ ![]()
B.![]()
C.﹣ ![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,橢圓
的中心為坐標原點,左焦點為F1(﹣1,0),離心率
.
(1)求橢圓G 的標準方程;
(2)已知直線
與橢圓
交于
兩點,直線
與橢圓
交于
兩點,且
,如圖所示.
![]()
①證明:
;
②求四邊形
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+x.
(Ⅰ)求函數g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函數,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的一個焦點為
,其左頂點
在圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)直線
交橢圓
于
兩點,設點
關于
軸的對稱點為
(點
與點
不重合),且直線
與
軸的交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,直線
的傾斜角為
且經過點
,以原點
為極點,以
軸正半軸為極軸,與直角坐標系
取相同的長度單位,建立極坐標系,設曲線
的極坐標方程為
.
(1)若直線
與曲線
有公共點,求
的取值范圍;
(2)設
為曲線
上任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,有下列4個命題:
①若
,則
的圖象關于直線
對稱;
②
與
的圖象關于直線
對稱;
③若
為偶函數,且
,則
的圖象關于直線
對稱;
④若
為奇函數,且
,則
的圖象關于直線
對稱.
其中正確的命題為 .(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com