【題目】針對下列圖象李明同學說到:圖①可能是
;圖②可能是
;圖③可能是
;圖④可能是![]()
![]()
你認為其中必定正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數學 來源: 題型:
【題目】在學校組織的“文明出行”知識競賽中,8(1)和8(2)班參賽人數相同,成績分為A、B、C三個等級,其中相應等級的得分依次記為A級100分、B級90分、C級80分,達到B級以上(含B級)為優秀,其中8(2)班有2人達到A級,將兩個班的成績整理并繪制成如下的統計圖,請解答下列問題:
![]()
(1)求各班參賽人數,并補全條形統計圖;
(2)此次競賽中8(2)班成績為C級的人數為_______人;
(3)小明同學根據以上信息制作了如下統計表:
平均數(分) | 中位數(分) | 方差 | |
8(1)班 | m | 90 | n |
8(2)班 | 91 | 90 | 29 |
請分別求出m和n的值,并從優秀率和穩定性方面比較兩個班的成績;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數據:
≈1.414,
≈1.732)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
(1)問題發現
![]()
如圖1,
和
均為等邊三角形,點
在同一直線上,連接
.請寫出
的度數及線段
之間的數量關系,并說明理由.
(2)類比探究
如圖2,
和
均為等腰直角三角形,
,點
在同一直線上,
為
中
邊上的高,連接
.
填空:①
的度數為____________;
②線段
之間的數量關系為_______________________________.
(3)拓展延伸
在(2)的條件下,若
,則四邊形
的面積為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為
,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得
≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得
利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是反比例函數
的圖象的一個分支.
![]()
比例系數
的值是________;
寫出該圖象的另一個分支上的
個點的坐標:________、________;
當
在什么范圍取值時,
是小于
的正數?
如果自變量
取值范圍為
,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,有一個內角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數學家還發現:在一個直角三角形中,兩條直角邊長的平方和等于斜邊長的平方。即如果一個直角三角形的兩條直角邊長度分別是
和
,斜邊長度是
,那么
。
![]()
(1)直接填空:如圖①,若a=3,b=4,則c= ;若
,
,則直角三角形的面積是 ______ 。
(2)觀察圖②,其中兩個相同的直角三角形邊AE、EB在一條直線上,請利用幾何圖形的之間的面積關系,試說明
。
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB=8,BC=10,利用上面的結論求EF的長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,
是邊長為9的等邊三角形,
是
邊上一動點,由
向
運動(與
、
不重合),
是
延長線上一動點,與點
同時以相同的速度由
向
延長線方向運動(
不與
重合),過
作
于
,連接
交
于![]()
![]()
(1)若
時,求
的長
(2)當點
,
運動時,線段
與線段
是否相等?請說明理由
(3)在運動過程中線段
的長是否發生變化?如果不變,求出線段
的長;如果發生變化,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線去小島捕魚作業.已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.
(1)求AP,BP的長(參考數據:
≈1.4,
≈1.7,
≈2.2);
(2)甲、乙兩船分別從A,B兩港口同時出發去小島P捕魚作業,甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結果求甲、乙兩船的速度各是多少海里/時?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com