【題目】已知函數
.
(1)當
時,求
的單調區間;
(2)若對任意
,都有
成立,求實數
的取值范圍;
(3)若過點
可作函數
圖像的三條不同切線,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】為方便市民出行,倡導低碳出行.某市公交公司推出利用支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,在推廣期內采用隨機優惠鼓勵市民掃碼支付乘車.該公司某線路公交車隊統計了活動推廣期第一周內使用掃碼支付的情況,其中
(單位:天)表示活動推出的天次,
(單位:十人次)表示當天使用掃碼支付的人次,整理后得到如圖所示的統計表1和散點圖.
表1:
x | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 |
y | 7 | 12 | 20 | 33 | 54 | 90 | 148 |
![]()
(1)由散點圖分析后,可用
作為該線路公交車在活動推廣期使用掃碼支付的人次
關于活動推出天次
的回歸方程,根據表2的數據,求此回歸方程,并預報第8天使用掃碼支付的人次(精確到整數).
表2:
|
|
| img src="http://thumb.zyjl.cn/questionBank/Upload/2019/08/08/08/88254471/SYS201908080801220877999013_ST/SYS201908080801220877999013_ST.008.png" width="67" height="40" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> |
|
|
4 | 52 | 3.5 | 140 | 2069 | 112 |
表中
,
.
(2)推廣期結束后,該車隊對此期間乘客的支付情況進行統計,結果如表3.
表3:
支付方式 | 現金 | 乘車卡 | 掃碼 |
頻率 | 10% | 60% | 30% |
優惠方式 | 無優惠 | 按7折支付 | 隨機優惠(見下面統計結果) |
統計結果顯示,掃碼支付中享受5折支付的頻率為
,享受7折支付的頻率為
,享受9折支付的頻率為
.已知該線路公交車票價為1元,將上述頻率作為相應事件發生的概率,記隨機變量
為在活動期間該線路公交車搭載乘客一次的收入(單位:元),求
的分布列和期望.
參考公式:對于一組數據
,其回歸直線
的斜率和截距的最小二乘估計分別為
參考數據:
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內)參加冬奧會選拔賽,記“甲得第一名”為
,“乙得第二名”為
,“丙得第三名”為
,若
是真命題,
是假命題,
是真命題,則選拔賽的結果為( )
A.甲得第一名、乙得第三名、丙得第二名
B.甲沒得第一名、乙沒得第二名、丙得第三名
C.甲得第一名、乙沒得第二名、丙得第三名
D.甲得第二名、乙得第一名、丙得第三名
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列
的前n項和為
,數列
滿足
.
(1)求數列
的通項公式;
(2)數列
滿足
,它的前n項和為
,若存在正整數n,使不等式
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線x2=2py(p>0)的焦點,斜率為
的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|=9.
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若
,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.已知曲線C的極坐標方程為ρ(1-cos2θ)=8cosθ,直線ρcosθ=1與曲線C相交于M,N兩點,直線l過定點P(2,0)且傾斜角為α,l交曲線C于A,B兩點.
(1)把曲線C化成直角坐標方程,并求|MN|的值;
(2)若|PA|,|MN|,|PB|成等比數列,求直線l的傾斜角α.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com