【題目】設a,b∈R且a<b,若a3eb=b3ea , 則下列結論中一定正確的個數是( ) ①a+b>6;②ab<9;③a+2b>9;④a<3<b.
A.1
B.2
C.3
D.4
【答案】D
【解析】解:令f(x)=
,則f′(x)=
, 可知:x>3時,f′(x)<0,函數f(x)單調遞減;
x>3時,f′(x)≥0,
函數f(x)單調遞增.
x=3時,函數f(x)取得極大值即最大值.
∵f(a)=f(b),a<b.
∴0<a<3<b,a+b>6;ab<9;a+2b>9.
因此正確的答案為4個.
故選:D.![]()
【考點精析】本題主要考查了利用導數研究函數的單調性和函數的極值與導數的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】由n(n≥2)個不同的數構成的數列a1 , a2 , …an中,若1≤i<j≤n時,aj<ai(即后面的項aj小于前面項ai),則稱ai與aj構成一個逆序,一個有窮數列的全部逆序的總數稱為該數列的逆序數.如對于數列3,2,1,由于在第一項3后面比3小的項有2個,在第二項2后面比2小的項有1個,在第三項1后面比1小的項沒有,因此,數列3,2,1的逆序數為2+1+0=3;同理,等比數列
的逆序數為4.
(1)計算數列
的逆序數;
(2)計算數列
(1≤n≤k,n∈N*)的逆序數;
(3)已知數列a1 , a2 , …an的逆序數為a,求an , an﹣1 , …a1的逆序數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為( ) ![]()
A.20
B.61
C.183
D.548
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列選項中說法正確的是( )
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量
,
滿足
,則
與
的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
+acosx,g(x)是f(x)的導函數.
(1)若f(x)在
處的切線方程為y=
,求a的值;
(2)若a≥0且f(x)在x=0時取得最小值,求a的取值范圍;
(3)在(1)的條件下,當x>0時,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差不為0的等差數列,Sn為數列{an}的前n項和,S5=20,a1 , a3 , a7成等比數列.
(1)求數列{an}的通項公式;
(2)若bn+1=bn+an , 且b1=1,求數列{
}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為
(a>0,β為參數),以O為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程ρcos(θ﹣
)=
.
(Ⅰ)若曲線C與l只有一個公共點,求a的值;
(Ⅱ)A,B為曲線C上的兩點,且∠AOB=
,求△OAB的面積最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com