【題目】已知
,
,其中
.
(1)若
,令函數
,解不等式
;
(2)若
,
,求
的值域;
(3)設函數
,若對于任意大于等于2的實數
,總存在唯一的小于2的實數
,使得
成立,試確定實數m的取值范圍.
【答案】(1)
;(2)當
時,值域為
,當
時,值域為
;(3)![]()
【解析】
(1)先由導函數得出
在
上的單調性,再根據單調性解函數不等式即可;(2)先求出
的范圍,再根據指數函數
的單調性求得值域;(3)首先對
進行分類討論,接下來研究函數
的單調性,再由“總存在唯一的小于2的實數
,使得
成立”分別求出兩函數的值域,使得
的值域為
的值域的子集,建立不等關系,解之即可.
(1)∵
,
時,
,
則![]()
且
,
,
∴
,∴函數
為單調遞減函數,
又
,
,
∴
,
整理得
,解得
或
,
不等式的解集為
.
(2)∵
,
,∴
,
∴
,所以
的值域為
.
(3)①若
,由
,
,
,
,
∴
不成立,
②若
,由
時,
,
∴
在
上單調遞減,
從而
,即![]()
(
)若
,由于
時,
,
∴
在
上單調遞增,
從而
,即
,
要使
成立,只需
,
即
成立即可,
由于函數
在
上單調遞增,且
,
∴![]()
(
)若
,由于
時,
,
∴
在
上單調遞增,在
上單調遞減,
∴
在
上單調遞增,在
上單調遞減,
從而
,即
,
要使
成立,只需
成立,
即
成立即可.
由
,可得
,
故當
時,
恒成立.
綜上所述:
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】某創業投資公司投資開發某種新能源產品,估計能獲得10萬元到100萬元的投資收益,現準備制定一個對科研課題組的獎勵方案:①獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加;②獎金不超過9萬元;③獎金不超過投資收益的20%.
(1)若建立函數
模型制定獎勵方案,試用數學語言表述該公司對獎勵函數
模型的基本要求,并分析函數
是否符合公司要求的獎勵函數模型,并說明原因;
(2)若該公司采用模型函數
作為獎勵函數模型,試確定最小的正整數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內,洗衣機銷量約占
,電視機銷量約占
,電冰箱銷量約占
).根據該圖,以下結論中一定正確的是( )
![]()
A. 電視機銷量最大的是第4季度
B. 電冰箱銷量最小的是第4季度
C. 電視機的全年銷量最大
D. 電冰箱的全年銷量最大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調查中學生對垃圾分類的了解程度某調查小組隨機抽取了某市的
名高中生,請他們指出生活中若干項常見垃圾的種類,把能準確分類不少于
項的稱為“比較了解”少于三項的稱為“不太了解”調查結果如下:
|
|
|
|
|
|
| |
男生(人) |
|
|
|
|
|
|
|
女生(人) |
|
|
|
|
|
|
|
(1)完成如下
列聯表并判斷是否有
的把握認為了解垃圾分類與性別有關?
比較了解 | 不太了解 | 合計 | |
男生 | ________ | ________ | ________ |
女生 | ________ | ________ | ________ |
合計 | ________ | ________ | ________ |
p>
(2)抽取的
名高中生中按照男、女生采用分層抽樣的方法抽取
人的樣本.
(i)求抽取的女生和男生的人數;
(ii)從
人的樣本中隨機抽取兩人,求兩人都是女生的概率.
參考數據:
|
|
|
|
|
|
|
|
|
|
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】考慮下面兩個定義域為(0,+∞)的函數f(x)的集合:
對任何不同的兩個正數
,都有
,
=
對任何不同的兩個正數
,都有![]()
(1)已知
,若
,且
,求實數
和
的取值范圍
(2)已知
,
且
的部分函數值由下表給出:
![]()
比較
與4的大小關系
(3)對于定義域為
的函數
,若存在常數
,使得不等式
對任何
都成立,則稱
為
的上界,將
中所有存在上界的函數
組成的集合記作
,判斷是否存在常數
,使得對任何
和
,都有
,若存在,求出
的最小值,若不存在,說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區進入持續25天左右的梅雨季節,如圖是江南某地區
年10年間梅雨季節的降雨量
單位:
的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
![]()
假設每年的梅雨季節天氣相互獨立,求該地區未來三年里至少有兩年梅雨季節的降雨量超過350mm的概率.
老李在該地區承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元
而乙品種楊梅的畝產量
畝
與降雨量之間的關系如下面統計表所示,又知乙品種楊梅的單位利潤為
元
,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤
萬元
的期望更大?并說明理由.
降雨量 |
|
|
|
|
畝產量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
:
的焦點為
,拋物線
上存在一點
到焦點
的距離等于3.
(1)求拋物線
的方程;
(2)過點
的直線
交拋物線
于
,
兩點,以線段
為直徑的圓交
軸于
,
兩點,設線段
的中點為
,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com