【題目】在平面直角坐標(biāo)系
中,已知圓
的參數(shù)方程為
(
為參數(shù)),與圓
關(guān)于直線
對(duì)稱的圓為
.以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線
的極坐標(biāo)方程是
.
(1)設(shè)直線
與
軸和
軸的交點(diǎn)分別為
,
,
為圓
上的任意一點(diǎn),求
的最大值.
(2)過點(diǎn)
且與直線
平行的直線
交圓
于
,
兩點(diǎn),求
的值.
【答案】(1)
;(2)![]()
【解析】
(1)利用直線方程求得線段
,再求得點(diǎn)
到直線
的最大距離,計(jì)算出面積即可;
(2)寫出直線
的參數(shù)方程,代入圓
化簡(jiǎn),利用幾何意義即可得到結(jié)論.
(1)圓
圓心坐標(biāo)為
,半徑為2,設(shè)圓
圓心坐標(biāo)為
,半徑為2,
由
,所以圓
的方程為
.
因?yàn)橹本
的極坐標(biāo)方程是
,即
,由
,得直線
的直角坐標(biāo)方程為
.點(diǎn)
到直線
的最大距離
,由
,
知
的最大值為
.
即
的最大值為
.
(2)因?yàn)橹本
的傾斜角為
,所以直線
的參數(shù)方程為
(
為參數(shù)),①
圓
的方程為
,②聯(lián)立①②得
.
設(shè)
,
兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為
,
則
,
,
故
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面
是邊長(zhǎng)為2的菱形,平面
平面
,
,
,
分別是棱
,
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 在新冠肺炎疫情的影響下,重慶市教委響應(yīng)“停課不停教,停課不停學(xué)”的號(hào)召進(jìn)行線上教學(xué),某校高三年級(jí)的甲、乙兩個(gè)班中,根據(jù)某次數(shù)學(xué)測(cè)試成績(jī)各選出5名學(xué)生參加數(shù)學(xué)建模競(jìng)賽,已知這次測(cè)試他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲班5名學(xué)生成績(jī)的平均分是83,乙班5名學(xué)生成績(jī)的中位數(shù)是86.
![]()
(1)求出
,
的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績(jī)的方差
、
,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽,并說明你的理由.
(2)從成績(jī)?cè)?/span>85分及以上的學(xué)生中隨機(jī)抽取2名,用
表示來自甲班的人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式m-|x-2|≥1,其解集為[0,4].
(1)求m的值;
(2)若a,b均為正實(shí)數(shù),且滿足a+b=m,求a2+b2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的四個(gè)頂點(diǎn)圍成的四邊形的面積為
,原點(diǎn)到直線
的距離為
.
(1)求橢圓
的方程;
(2)已知定點(diǎn)
,是否存在過
的直線
,使
與橢圓
交于
,
兩點(diǎn),且以
為直徑的圓過橢圓
的左頂點(diǎn)?若存在,求出
的方程:若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
經(jīng)過點(diǎn)
,傾斜角為
,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線
的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)直線
與曲線
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為4.且過點(diǎn)
.
(1)求橢圓E的方程;
(2)設(shè)
,
,
,過B點(diǎn)且斜率為
的直線l交橢圓E于另一點(diǎn)M,交x軸于點(diǎn)Q,直線AM與直線
相交于點(diǎn)P.證明:
(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對(duì)生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各
次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:
![]()
(1)①設(shè)所采集的
個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù)
,并將連續(xù)正常運(yùn)行時(shí)間超過
和不超過
的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 |
|
|
改造后 |
|
|
②根據(jù)①中的列聯(lián)表,能否有
的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?
附:
.
|
|
|
|
|
|
|
|
(2)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù),工廠對(duì)生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種.對(duì)生產(chǎn)線設(shè)定維護(hù)周期為
天(即從開工運(yùn)行到第
天
進(jìn)行維護(hù).生產(chǎn)線在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為
萬元/次;保障維護(hù)費(fèi)第一次為
萬元/周期,此后每增加一次則保障維護(hù)費(fèi)增加
萬元.現(xiàn)制定生產(chǎn)線一個(gè)生產(chǎn)周期(以
天計(jì))內(nèi)的維護(hù)方案:
,
、
、
、
.以生產(chǎn)線在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com