【題目】已知橢圓
的離心率為
,
,
分別是橢圓的左、右焦點,直線
過點
與橢圓交于
、
兩點,且
的周長為
.
(1)求橢圓
的標準方程;
(2)是否存在直線
使
的面積為
?若存在,求出直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知函數f (x)=xlnx-x.
(1)設g(x)=f (x)+|x-a|,a∈R.e為自然對數的底數.
①當
時,判斷函數g(x)零點的個數;
②
時,求函數g(x)的最小值.
(2)設0<m<n<1,求證:![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義域為R的奇函數,且滿足f(x﹣2)=f(x+2),當x∈(0,2)時,f(x)=ln(x2﹣x+1),則方程f(x)=0在區間[0,8]上的解的個數是( )
A.3B.5C.7D.9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數方程為
(
為參數).以坐標原點為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標方程;
(2)若
與
交于
、
兩點,點
的極坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形
中,
,
,
,
,
,點
在
上,且
,將
沿
折起,使得平面
平面
(如圖),
為
中點.
![]()
(1)求證:
平面
;
(2)在線段
上是否存在點
,使得
平面
?若存在,求
的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知焦點在x軸上的橢圓C1的長軸長為8,短半軸為2
,拋物線C2的頂點在原點且焦點為橢圓C1的右焦點.
(1)求拋物線C2的標準方程;
(2)過(1,0)的兩條相互垂直的直線與拋物線C2有四個交點,求這四個點圍成四邊形的面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com