【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),
,以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
極坐標(biāo)方程為
.
(1)若直線
與圓
相切,求
的值;
(2)已知直線
與圓
交于
,
兩點(diǎn),記點(diǎn)
、
相應(yīng)的參數(shù)分別為
,
,當(dāng)
時,求
的長.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有兩條互相垂直的道路
與
,分別以
、
所在直線為
軸、
軸建立如圖所示的平面直角坐標(biāo)系
,其第一象限有一塊空地
,其邊界
是函數(shù)
的圖象,前一段曲線
是函數(shù)
圖象的一部分,后一段
是一條線段.測得
到
的距離為
米,到
的距離為
米,
長為
米.現(xiàn)要在此地建一個社區(qū)活動中心,平面圖為梯形
(其中點(diǎn)
在曲線
上,點(diǎn)
在線段
上,且
、
為兩底邊).
(1)求函數(shù)
的解析式;
(2)當(dāng)梯形的高為多少米時,該社區(qū)活動中心的占地面積最大,并求出最大面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當(dāng)
恒成立時,求實(shí)數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加數(shù)學(xué)競賽決賽的500名同學(xué)編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機(jī)抽的號碼為003,這500名學(xué)生分別在三個考點(diǎn)考試,從001到200在第一考點(diǎn),從201到355在第二考點(diǎn),從356到500在第三考點(diǎn),則第二考點(diǎn)被抽中的人數(shù)為( )
A.14
B.15
C.16
D.17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在[0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,2)時,
;②x∈[0,+∞)都有f(2x)=2f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)﹣a的零點(diǎn)從小到大依次為x1 , x2 , x3 , …xn , …,若
,則x1+x2+…+x2n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)O為原點(diǎn),極軸為x軸的非負(fù)半軸建立直角坐標(biāo)系,直線l的參數(shù)方程為
(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)直線l與曲線C交于B,D兩點(diǎn),當(dāng)|BD|取到最小值時,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,有一塊半橢圓形鋼板,其長半軸長為
,短半軸長為
,計劃將此鋼板切割成等腰梯形的形狀,下底
是半橢圓的短軸,上底
的端點(diǎn)在橢圓上,梯形面積為
.
(1)當(dāng)
,
時,求梯形
的周長(精確到
);
(2)記
,求面積
以
為自變量的函數(shù)解析式
,并寫出其定義域.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系
的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.若直線
的參數(shù)方程為
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(I)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(II)設(shè)直線
與曲線
相交于
兩點(diǎn),若
點(diǎn)的直角坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】前不久商丘市因環(huán)境污染嚴(yán)重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對應(yīng)數(shù)據(jù).
![]()
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;
(2)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:
=
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com