【題目】已知函數(shù)
,x∈[-1,1],函數(shù)
,a∈R的最小值為h(a).
(1)求h(a)的解析式;
(2)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)?/span>[n,m]時(shí),值域?yàn)?/span>[n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說明理由.
【答案】(1)
;(2)答案見解析.
【解析】試題分析:(1)
為關(guān)于
的二次函數(shù),可用換元法,轉(zhuǎn)化為二次函數(shù)在特定區(qū)間上的最值問題,定區(qū)間動(dòng)軸;
(2)由(1)可知
時(shí),
為一次函數(shù)且為減函數(shù),求值域,找關(guān)系即可.
試題解析:(1)由
,
知
,
令
,設(shè)
,則
,則
的對(duì)稱軸為
,故有:
當(dāng)
時(shí),
的最小值
,
②當(dāng)
時(shí),
的最小值
,
③當(dāng)
時(shí),
的最小值
,
綜上所述, h(a)=![]()
(2)當(dāng)a≥3時(shí),h(a)=-6a+12,故m>n>3時(shí),h(a)在[n,m]上為減函數(shù),
所以h(a)在[n,m]上的值域?yàn)?/span>[h(m),h(n)].
由題意,則有![]()
,兩式相減得6n-6m=n2-m2,又m≠n,所以m+n=6,這與m>n>3矛盾,故不存在滿足題中條件的m,n的值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則( )
A. f![]()
![]()
B. f![]()
![]()
![]()
C. f![]()
![]()
![]()
D. f![]()
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
關(guān)于
軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn)
,直線
經(jīng)過拋物線
的焦點(diǎn).
(1)求拋物線
的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)
的直線
與拋物線
相交于不同的兩點(diǎn)
,
,且滿足
,證明直線
過
軸上一定點(diǎn)
,并求出點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(2)=1,f(x+4)=2f(x)+f(1),則f(3)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的展開式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.
(1)求展開式中的常數(shù)項(xiàng);
(2)求展開式中所有整式項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得
=80,
=20,
=184,
=720.
(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程
=
x+
;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線性回歸方程
=
x+
中,b=
,
=
-
,其中
,
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為P′(
,
),當(dāng)P是原點(diǎn)時(shí),定義“伴隨點(diǎn)”為它自身,現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)A′,則點(diǎn)A′的“伴隨點(diǎn)”是點(diǎn)A.
②單元圓上的“伴隨點(diǎn)”還在單位圓上.
③若兩點(diǎn)關(guān)于x軸對(duì)稱,則他們的“伴隨點(diǎn)”關(guān)于y軸對(duì)稱
④若三點(diǎn)在同一條直線上,則他們的“伴隨點(diǎn)”一定共線.
其中的真命題是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com