【題目】已知函數
的最大值是0,函數
.
(Ⅰ)求實數
的值;
(Ⅱ)若當
時,不等式
恒成立,求實數
的取值范圍.
【答案】(Ⅰ)
;(Ⅱ)![]()
【解析】
(Ⅰ)求出函數的導函數,根據函數的單調性求出f(x)的最大值,得到關于m的方程,進而求出m的值;
(Ⅱ)構造函數F(x)=f(x)-g(x),求出函數的導函數
,進而求出
的導函數
,利用導數與函數單調性的關系,通過討論a的范圍,得到函數的單調區間,結合函數恒成立問題,進而求出a的取值范圍.
(Ⅰ)函數
的定義域為![]()
,
因為
,所以
在
上單調遞減.
令
,得![]()
當
時,
單調遞增;
當
時,
單調遞減;
所以,當
時,
=![]()
于是,
,得
,
易知,函數
在
處有唯一零點,所以
,
.
(Ⅱ)令
,![]()
則
,
設![]()
則
,
①當
時,
,
在
上單調遞減,
則
時,
,
在
上單調遞減,
故當
時,
,與已知矛盾.
②當
時,![]()
當
時,
,
在
上單調遞減,
則
時,![]()
故
在
上單調遞減,
則當
時,
,與已知矛盾.
③當
時,
,
在
上單調遞增,
則
時,![]()
所以
在
上單調遞增,故當
時,
恒成立.
綜上,實數
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】一個經銷鮮花產品的微店,為保障售出的百合花品質,每天從云南鮮花基地空運固定數量的百合花,如有剩余則免費分贈給第二天購花顧客,如果不足,則從本地鮮花供應商處進貨.今年四月前10天,微店百合花的售價為每支2元,云南空運來的百合花每支進價1.6元,本地供應商處百合花每支進價1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.
![]()
(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數和眾數,并完成頻率分布直方圖;
(Ⅱ)預計四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進貨價格與售價均不變,請根據(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數據用該組區間的中點值作代表,位于各區間的頻率代替位于該區間的概率),微店每天從云南固定空運250支,還是255支百合花,四月后20天百合花銷售總利潤會更大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設曲線
(a為正常數)與
在x軸上方僅有一個公共點P.
(1)求實數m的取值范圍(用a表示);
(2)O為原點,若
與x軸的負半軸交于點A,當
時,試求△OAP的面積的最大值(用a表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數最多者獲勝.假設甲投中“有初”的概率為
,投中“貫耳”的概率為
,投中“散射”的概率為
,投中“雙耳”的概率為
,投中“依竿”的概率為
,乙的投擲水平與甲相同,且甲乙投擲相互獨立.比賽第一場,兩人平局;第二場,甲投了個“貫耳”,乙投了個“雙耳”,則三場比賽結束時,甲獲勝的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年12月以來,湖北省武漢市持續開展流感及相關疾病監測,發現多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數隨時間變化的散點圖.
![]()
為了預測在未釆取強力措施下,后期的累計確診人數,建立了累計確診人數y與時間變量t的兩個回歸模型,根據1月15日至1月24日的數據(時間變量t的值依次1,2,…,10)建立模型
和
.
(1)根據散點圖判斷,
與
哪一個適宜作為累計確診人數y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)
(2根據(1)的判斷結果及附表中數據,建立y關于x的回歸方程;
(3)以下是1月25日至1月29日累計確診人數的真實數據,根據(2)的結果回答下列問題:
時間 | 1月25日 | 1月26日 | 1月27日 | 1月28日 | 1月29日 |
累計確診人數的真實數據 | 1975 | 2744 | 4515 | 5974 | 7111 |
(ⅰ)當1月25日至1月27日這3天的誤差(模型預測數據與真實數據差值的絕對值與真實數據的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?
(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數據明顯低于預測數據,則認為防護措施有效,請判斷預防措施是否有效?
附:對于一組數據(
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
參考數據:其中
,
.
|
|
|
|
|
|
|
|
|
|
|
|
5.5 | 390 | 19 | 385 | 7640 | 31525 | 154700 | 100 | 150 | 225 | 338 | 507 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,短軸長為
.
(1)求橢圓
的標準方程;
(2)若橢圓
的左焦點為
,過點
的直線
與橢圓
交于
兩點,則在
軸上是否存在一個定點
使得直線
的斜率互為相反數?若存在,求出定點
的坐標;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究公司為了調查公眾對某事件的關注程度,在某年的連續6個月內,月份
和關注人數
(單位:百)(
)數據做了初步處理,得到下面的散點圖及一些統計量的值.
![]()
|
|
|
17.5 | 35 | 36.5 |
(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數加以說明,并建立y關于x的回歸方程;
(2)經統計,調查材料費用v(單位:百元)與調查人數滿足函數關系
,求材料費用的最小值,并預測此時的調查人數;
(3)現從這6個月中,隨機抽取3個月份,求關注人數不低于1600人的月份個數
分布列與數學期望.
參考公式:相關系數
,若
,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程
中斜率與截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數的導數,得到關于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導數研究其單調性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當
時,
,
單調遞減,且
;
當
時,
,
單調遞增;且
,
所以
在
上當單調遞減,在
上單調遞增,且
,
故
,
故
.
【點睛】本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標方程;
(2)在曲線
上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com