【題目】已知函數(shù)f(x)=x3﹣3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關(guān)于x的方程f(x)=k有3個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍.
【答案】(I)當(dāng)x=﹣1時(shí),有極大值f(﹣1)=2;當(dāng)x=1時(shí),有極小值f(1)=﹣2(II)(﹣2,2)
【解析】試題分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(Ⅱ)問題轉(zhuǎn)化為
和
有3個(gè)交點(diǎn),根據(jù)f(x)的極大值和極小值求出k的范圍即可.
試題解析:
(I)∵
,∴
,
令
,解得
或
,列表如下:
x | (﹣∞,﹣1) | ﹣1 | (﹣1,1) | 1 | (1,+∞) |
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | 增 | 極大值 | 減 | 極小值 | 增 |
當(dāng)x=﹣1時(shí),有極大值f(﹣1)=2;
當(dāng)x=1時(shí),有極小值f(1)=﹣2.
(II)要
有3個(gè)實(shí)根,
由(I)知:
,
即
,
∴k的取值范圍是(﹣2,2).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈(zèng)送給4位學(xué)生,每位學(xué)生1本,則不同的贈(zèng)送方法共有( )
A. 15種 B. 20種 C. 48種 D. 60種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定圓
,動(dòng)圓
過點(diǎn)
且與圓
相切,記圓心
的軌跡為
.
(I)求軌跡
的方程;
(Ⅱ)若與
軸不重合的直線
過點(diǎn)
,且與軌跡
交于
兩點(diǎn),問:在
軸上是否存在定點(diǎn)
,使得
為定值?若存在,試求出點(diǎn)
的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面
平面
,四邊形
是菱形,四邊形
是矩形,
,
,
,
是
的中點(diǎn).
(Ⅰ)求證:
平面
;
(II)在線段
上是否存在點(diǎn)
,使二面角
的大小為
?若存在,求出
的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列4個(gè)命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當(dāng)0≤α≤π時(shí),若8x2﹣(8sinα)x+cos2α≥0對(duì)x∈R恒成立,則α的取值范圍是0≤α≤
.
其中真命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩頂點(diǎn)坐標(biāo)A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=1(從圓外一點(diǎn)到圓的兩條切線段長相等),動(dòng)點(diǎn)C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點(diǎn)為D,當(dāng)點(diǎn)A在以線段CD為直徑的圓上時(shí),求直線BC的方程.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,底面
是直角梯形,
,
,
,
是
上的點(diǎn).
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
是
的中點(diǎn),且二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知不等式![]()
的對(duì)任意實(shí)數(shù)
恒成立.
(Ⅰ)求實(shí)數(shù)
的最小值
;
(Ⅱ)若
,且滿足
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com