【題目】已知橢圓
,傾斜角為
的直線與橢圓相交于
兩點(diǎn),且線段
的中點(diǎn)為
.過(guò)橢圓
內(nèi)一點(diǎn)
的兩條直線分別與橢圓交于點(diǎn)
,且滿足
,其中
為實(shí)數(shù).當(dāng)直線
平行于
軸時(shí),對(duì)應(yīng)的
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)當(dāng)
變化時(shí),
是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)
; (Ⅱ)
.
【解析】
(Ⅰ)將M和N點(diǎn)坐標(biāo)代入橢圓方程,根據(jù)斜率公式求得kMN=1,求得a和b的關(guān)系,當(dāng)直線AP平行于x軸時(shí),設(shè)|AC|=2d,求得A點(diǎn)坐標(biāo),代入橢圓方程,即可求得a和b,求得橢圓方程;
(Ⅱ)設(shè)出A、B、C和D點(diǎn)坐標(biāo),由向量共線,
=λ
,
=λ
,及A和B在橢圓上,利用斜率公式,kAB=kCD,求得3(1+λ)kAB=﹣2(1+λ),即可求得kAB為定值.
(Ⅰ)設(shè)M(m1,n1)、N(m2,n2),則
,
兩式相減
,
故a2=3b2
當(dāng)直線AP平行于x軸時(shí),設(shè)|AC|=2d,
∵
,
,則
,解得
,
故點(diǎn)A(或C)的坐標(biāo)為
.
代入橢圓方程
,得
a2=3,b2=1,
所以方程為
.
(Ⅱ)設(shè)A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)
由于
,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),
…①
同理
可得
…②
由①②得:
…③
將點(diǎn)A、B的坐標(biāo)代入橢圓方程得
,
兩式相減得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,
于是3(y1+y2)kAB=﹣(x1+x2)…④
同理可得:3(y3+y4)kCD=﹣(x3+x4),
于是3(y3+y4)kAB=﹣(x3+x4)(∵AB∥CD,∴kAB=kCD)
所以3λ(y3+y4)kAB=﹣λ(x3+x4)…⑤
由④⑤兩式相加得到:3[y1+y2+λ(y3+y4)]kAB=﹣[(x1+x2)+λ(x3+x4)]
把③代入上式得3(1+λ)kAB=﹣2(1+λ),
解得:
,
當(dāng)λ變化時(shí),kAB為定值,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
的焦距為
,離心率為
,橢圓的右頂點(diǎn)為
.
![]()
(1)求該橢圓的方程;
(2)過(guò)點(diǎn)
作直線
交橢圓于兩個(gè)不同點(diǎn)
,求證:直線
的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)解不等式
;
(2)若函數(shù)
在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)若函數(shù)
,其中
為奇函數(shù),
為偶函數(shù),若不等式
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代一部重要的數(shù)學(xué)著作,書(shū)中有如下問(wèn)題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里,駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問(wèn)幾何日相逢.”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”試確定離開(kāi)長(zhǎng)安后的第天,兩馬相逢.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
的兩個(gè)零點(diǎn)為
,
,且
.
(Ⅰ)求
的取值范圍;
(Ⅱ)若
,且函數(shù)
在區(qū)間
上的最大值為
,試判斷點(diǎn)
是否在直線
上? 并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實(shí)根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為
,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1;
(Ⅱ)求銳二面角B﹣AC﹣C1的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)Q為對(duì)角面A1BCD1內(nèi)一動(dòng)點(diǎn),點(diǎn)M、N分別在直線AD和AC上自由滑動(dòng),直線DQ與MN所成角的最小值為θ,則下列結(jié)論中正確的是( )
![]()
A. 若θ=15°,則點(diǎn)Q的軌跡為橢圓的一部分
B. 若θ=30°,則點(diǎn)Q的軌跡為橢圓的一部分
C. 若θ=45°,則點(diǎn)Q的軌跡為橢圓的一部分
D. 若θ=60°,則點(diǎn)Q的軌跡為橢圓的一部分
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com