【題目】已知函數
.
(Ⅰ)當
時,證明:
有且只有一個零點;
(Ⅱ)求函數
的極值.
科目:高中數學 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+
),則下面結論正確的是( )
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
上一點
到焦點
的距離
.
(1)求拋物線
的方程;
(2)過點
引圓
的兩條切線
,切線
與拋物線
的另一交點分別為
,線段
中點的橫坐標記為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,傾斜角為
的直線
的參數方程為
(
為參數).在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求直線
的普通方程與曲線
的直角坐標方程;
(2)若直線
與曲線
交于
,
兩點,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某健身機構統計了去年該機構所有消費者的消費金額(單位:元),如圖所示:
![]()
(1)現從去年的消費金額超過3200元的消費者中隨機抽取2人,求至少有1位消費者,其去年的消費者金額在
的范圍內的概率;
(2)針對這些消費者,該健身機構今年欲實施入會制,詳情如下表:
![]()
預計去年消費金額在
內的消費者今年都將會申請辦理普通會員,消費金額在
內的消費者都將會申請辦理銀卡會員,消費金額在
內的消費者都將會申請辦理金卡會員,消費者在申請辦理會員時,需一次性繳清相應等級的消費金額,該健身機構在今年底將針對這些消費者舉辦消費返利活動,現有如下兩種預設方案:
方案1:按分層抽樣從普通會員,銀卡會員,金卡會員中總共抽取25位“幸運之星”給予獎勵:
普通會員中的“幸運之星”每人獎勵500元;銀卡會員中的“幸運之星”每人獎勵600元;金卡會員中的“幸運之星”每人獎勵800元.
方案二:每位會員均可參加摸獎游戲,游戲規則如下:從一個裝有3個白球、2個紅球(球只有顏色不同)的箱子中,有放回地摸三次球,每次只能摸一個球,若摸到紅球的總數為2,則可獲得200元獎勵金;若摸到紅球的總數為3,則可獲得300元獎勵金;其他情況不給予獎勵. 規定每位普通會員均可參加1次摸獎游戲;每位銀卡會員均可參加2次摸獎游戲;每位金卡會員均可參加3次摸獎游戲(每次摸獎的結果相互獨立)
請你預測哪一種返利活動方案該健身機構的投資較少?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著移動互聯網的發展,與餐飲美食相關的手機APP軟件層出不窮.現從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統計,得到頻率分布直方圖如下.
![]()
![]()
![]()
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘,F從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數及平均數;
(3)如果以“平均送達時間”的平均數作為決策依據,從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業推出一款意外險產品,每年每位職工只要交少量保費,發生意外后可一次性獲得若干賠償金,保險公司把企業的所有崗位共分為
三類工種,從事這三類工種的人數分別為12000,6000,2000,由歷史數據統計出三類工種的賠付頻率如下表(并以此估計賠付概率):
![]()
已知
三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業務過程中的固定支出為每年10萬元.
(1)求保險公司在該業務所或利潤的期望值;
(2)現有如下兩個方案供企業選擇:
方案1:企業不與保險公司合作,職工不交保險,出意外企業自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業開展這項工作的固定支出為每年12萬元;
方案2:企業與保險公司合作,企業負責職工保費的70%,職工個人負責保費的30%,出險后賠償金由保險公司賠付,企業無額外專項開支.
請根據企業成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系
中,以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
;直線
的參數方程為
(t為參數).直線
與曲線
分別交于
兩點.
(1)寫出曲線
的直角坐標方程和直線
的普通方程;
(2)若點
的極坐標為
,
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com