【題目】判斷下列函數的奇偶性:
(1)f(x)=|x-2|+|x+2|;
(2)![]()
科目:高中數學 來源: 題型:
【題目】袋中有7個球,其中4個白球,3個紅球,從袋中任意取出2個球,求下列事件的概率:
(1)
取出的2個球都是白球;
(2)
取出的2個球中1個是白球,另1個是紅球.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現從某醫院中隨機抽取了七位醫護人員的關愛患者考核分數(患者考核:
分制),用相關的特征量
表示;醫護專業知識考核分數(試卷考試:
分制),用相關的特征量
表示,數據如下表:
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 98 | 88 | 96 | 91 | 90 | 92 | 96 |
| 9.9 | 8.6 | 9.5 | 9.0 | 9.1 | 9.2 | 9.8 |
(1)求
關于
的線性回歸方程(計算結果精確到
);
(2)利用(1)中的線性回歸方程,分析醫護專業考核分數的變化對關愛患者考核分數的影響,并估計某醫護人員的醫護專業知識考核分數為
分時,他的關愛患者考核分數(精確到
);
(3)現要從醫護專業知識考核分數
分以下的醫護人員中選派
人參加組建的“九寨溝災后醫護小分隊”培訓,求這兩人中至少有一人考核分數在
分以下的概率.
附:回歸方程
中斜率和截距的最小二乘法估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
的方程為:
.
(1)直線
過點
,且與圓
交于
兩點,若
,求直線
的方程;
(2)圓
上有一動點
,
,若向量
,求動點
的軌跡方程,并說明此軌跡是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地發生地質災害,使當地的自來水受到了污染,某部門對水質檢測后,決定往水中投放一種藥劑來凈化水質.已知每投放質量為m的藥劑后,經過x天該藥劑在水中釋放的濃度y(毫克/升)滿足
,其中
,當藥劑在水中釋放的濃度不低于4(毫克/升)時稱為有效凈化;當藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質量為m=4,試問自來水達到有效凈化一共可持續幾天?
(2)如果投放的藥劑質量為m,為了使在7天(從投放藥劑算起包括7天)之內的自來水達到最佳凈化,試確定應該投放的藥劑質量m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)若函數f(x)=ax2+bx+3a+b是偶函數,定義域為[a-1,2a],則a=________,b=________;
(2)已知函數f(x)=ax2+2x是奇函數,則實數a=________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為
,三月底測得鳳眼蓮覆蓋面積為
,鳳眼蓮覆蓋面積
(單位:
)與月份
(單位:月)的關系有兩個函數模型
與
可供選擇.
(1)試判斷哪個函數模型更合適并求出該模型的解析式;
(2)求鳳眼蓮覆蓋面積是元旦放入面積
倍以上的最小月份.
(參考數據
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為鼓勵家校互動,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到
位教師近
年每人手機月平均使用流量
(單位:
)的數據,其頻率分布直方圖如下:
![]()
若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.
(Ⅰ) 從該校教師中隨機抽取
人,求這
人中至多有
人月使用流量不超過
的概率;
(Ⅱ) 現該通訊商推出三款流量套餐,詳情如下:
套餐名稱 | 月套餐費(單位:元) | 月套餐流量(單位: |
|
|
|
|
|
|
|
|
|
這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統就自動幫用戶充值
流量,資費
元;如果又超出充值流量,系統就再次自動幫用戶充值
流量,資費
元/次,依次類推,如果當月流量有剩余,系統將自動清零,無法轉入次月使用.
學校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔系統自動充值的流量資費的
,其余部分由教師個人承擔,問學校訂購哪一款套餐最經濟?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F.
(1)求拋物線的焦點坐標和標準方程;
(2)P是拋物線上一動點,M是PF的中點,求M的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com