【題目】已知拋物線
上一點
到其焦點
的距離為4,橢圓
的離心率
,且過拋物線的焦點
.
(1)求拋物線
和橢圓
的標準方程;
(2)過點
的直線
交拋物線
于
兩不同點,交
軸于點
,已知
,
,求證:
為定值.
【答案】(1)拋物線的方程為
,橢圓的標準方程為
;(2)見解析.
【解析】試題分析:(1)利用拋物線C1:y2=2px上一點M(3,y0)到其焦點F的距離為4;求出p,即可得到拋物線方程,通過橢圓的離心率e=
,,且過拋物線的焦點F(1,0)求出a,b,即可得到橢圓的方程;
(2)直線l1的斜率必存在,設為k,設直線l與橢圓C2交于A(x1,y1),B(x2,y2),求出直線l的方程為y=k(x-1),N(0,-k),聯立直線與橢圓的方程,利用韋達定理以及判別式,通過向量關系式即可求出λ+μ為定值.
試題解析:
(Ⅰ)拋物線的準線為
, 所以
,所以![]()
拋物線的方程為![]()
所以
,
,解得
所以橢圓的標準方程為
(Ⅱ)直線
的斜率必存在,設為
,設直線
與拋物線
交于![]()
則直線
的方程為
,![]()
聯立方程組:![]()
所以
,
(*)
由
得:
得:
所以![]()
將(*)代入上式,得![]()
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , a4+a7=20,對任意的k∈N都有Sk+1=3Sk+k2 .
(I) 求數列{an}的通項公式;
(Ⅱ)數列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項公式及{(﹣1)m﹣1bm}的前2m項和T2m .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線
:
的準線
與
軸交于橢圓
:
的右焦點
,
為
的左焦點.橢圓的離心率為
,拋物線
與橢圓
交于
軸上方一點
,連接
并延長交
于點
,
為
上一動點,且在
,
之間移動.
(1)當
時,求
的方程;
(2)若
的邊長恰好是三個連續的自然數。求
到直線
距離的最大值以及此時
的坐標.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:條件p:實數t滿足使對數log2(﹣2t2+7t﹣5)有意義;條件q:實數t滿足不等式t2﹣(a+3)t+a+2<0
(1)若命題¬p為真,求實數t的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為
,賠錢的概率是
;乙股票賺錢的概率為
,賠錢的概率為
.對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓
:
的左、右頂點分別為A,B,其離心率
,點
為橢圓上的一個動點,
面積的最大值是
.
(1)求橢圓的方程;
(2)若過橢圓
右頂點
的直線
與橢圓的另一個交點為
,線段
的垂直平分線與
軸交于點
,當
時,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2
sin
cos
﹣2sin2
(ω>0)的最小正周期為3π.
(I)求函數f(x)的單調遞增區間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C所對的邊,a<b<c,
a=2csinA,并且f(
A+
)=
,求cosB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右焦點為
,離心率為
,過
作與
軸垂直的直線與橢圓交于
兩點,
.
(1)求橢圓
的方程;
(2)設過點
的直線
的斜率存在且不為0,直線
交橢圓于
兩點,若
中點為
,
為原點,直線
交
于點
,若以
為直徑的圓過右焦點
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com