【題目】已知拋物線
:
內(nèi)有一點
,過
的兩條直線
,
分別與拋物線
交于
,
和
,
兩點,且滿足
,
,已知線段
的中點為
,直線
的斜率為
.
![]()
(1)求證:點
的橫坐標(biāo)為定值;
(2)如果
,點
的縱坐標(biāo)小于3,求
的面積的最大值.
【答案】(1)見證明;(2)![]()
【解析】
(1)設(shè)
中點為
,根據(jù)向量的線性運算可知
,且
,
和
三點共線,利用點差法可得
,
,即
,可知
軸,故
為定值(2)由
得到
,設(shè)
,
,聯(lián)立直線與拋物線方程可求
,寫出面積公式即可求最值.
(1)設(shè)
中點為
,則由
,
可推得
,
,這說明
,且
,
和
三點共線.
對
,
使用點差法,可得
,即
.
同理
.
于是
,即
軸,所以
為定值.
(2)由
得到
,設(shè)
,
,聯(lián)立![]()
得
,所以
,
,
根據(jù)點到直線的距離公式知P到AB的距離為
,
于是
,令x=
,則
,
,令
得
,當(dāng)
時,
,函數(shù)為增函數(shù),當(dāng)
時,
,函數(shù)為減函數(shù),故當(dāng)
,即
時,
有最大值
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
平面ABCD,底面ABCD是正方形,
,E為PC上一點,當(dāng)F為DC的中點時,EF平行于平面PAD.
![]()
(Ⅰ)求證:
平面PCB;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
經(jīng)過點
.
(1)寫出拋物線
的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程,并求拋物線
的焦點到準(zhǔn)線的距離;
(2)過點
且斜率存在的直線
與拋物線
交于不同的兩點
,
,且點
關(guān)于
軸的對稱點為
,直線
與
軸交于點
.
(i)求點
的坐標(biāo);
(ii)求
與
面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年上半年我國多個省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴(yán)重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個國家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴(kuò)大生產(chǎn),決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計如下表:
生豬存欄數(shù)量 | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為
與
具有線性回歸關(guān)系,請幫他求出
關(guān)于
的線性回歸方程
(保留小數(shù)點后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出
與
的回歸模型:
.為了評價兩種模型的擬合結(jié)果,請完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.01元)(備注:
稱為相應(yīng)于點
的殘差);
生豬存欄數(shù)量 | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 | |
②分別計算模型甲與模型乙的殘差平方和
及
,并通過比較
與
的大小,判斷哪個模型擬合效果更好;
(3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元.若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:
,![]()
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
是常數(shù)).
(1)若
,求函數(shù)
的值域;
(2)若
為奇函數(shù),求實數(shù)
.并證明
的圖像始終在
的圖像的下方;
(3)設(shè)函數(shù)
,若對任意
,以
為邊長總可以構(gòu)成三角形,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的
,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的焦距為
,且橢圓過點
,直線
與圓
:
相切,且與橢圓
相交于
兩點.
(1)求橢圓
的方程;
(2)求三角形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.華為公司研發(fā)的5G技術(shù)是中國在高科技領(lǐng)域的重大創(chuàng)新,目前處于世界領(lǐng)先地位,今年即將投入使用,它必將為人們生活帶來別樣的精彩,成為每個中國人的驕傲.現(xiàn)假設(shè)在一段光纖中有
條通信線路,需要輸送
種數(shù)據(jù)包,每條線路單位時間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成
種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號是_______.
①甲線路只能輸送第四種數(shù)據(jù)包;
②乙線路不能輸送第二種數(shù)據(jù)包;
③丙線路可以不輸送第三種數(shù)據(jù)包;
④丁線路可以輸送第三種數(shù)據(jù)包;
⑤戊線路只能輸送第四種數(shù)據(jù)包.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com