已知橢圓
的中心在原點
,離心率
,右焦點為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓的上頂點為
,在橢圓
上是否存在點
,使得向量
與
共線?若存在,求直線
的方程;若不存在,簡要說明理由.
(Ⅰ)
; (Ⅱ)直線
的方程為
或![]()
解析試題分析:(Ⅰ) 由離心率和焦點坐標兩個條件求出橢圓的C的方程.
(Ⅱ)首先假設(shè)存在點P,再通過向量
與
共線.得到關(guān)于一個關(guān)于點P
的橫縱坐標的
的一個等式.因為點P
在橢圓上,所以又得到一個關(guān)于
的一個方程.由此可解出
的值.從而寫出直線AP的方程.本小題是橢圓中的一個較簡單的問題,通過兩個已知條件求出橢圓的方程.接著利用橢圓方程以及向量的共線知識,求出共線問題.
試題解析:(1)設(shè)橢圓
的方程為
,
離心率
,右焦點為
,![]()
,![]()
,
故橢圓
的方程為
6分
(2)假設(shè)橢圓
上存在點
(
),使得向量
與
共線, ![]()
,
, 7分![]()
(1) 8分
又
點
(
)在橢圓
上,![]()
(2) 9分
由(1)、(2)組成方程組解得:
,或
, 10分
當點
的坐標為
時,直線
的方程為
, 11分
當點
的坐標為
時,直線
的方程為
, 12分
故直線
的方程為
或
13分
考點:1.橢圓的標準方程.2.向量的共線.3.直線方程的表示.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某校同學設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中
、
是過拋物線
焦點
的兩條弦,且其焦點
,
,點
為
軸上一點,記
,其中
為銳角.![]()
(1)求拋物線
方程;
(2)求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知拋物線
的焦點為F,過F的直線交拋物線于M、N兩點,其準線
與x軸交于K點.![]()
(1)求證:KF平分∠MKN;
(2)O為坐標原點,直線MO、NO分別交準線于點P、Q,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為
,點
是點
關(guān)于
軸的對稱點,過點
的直線交拋物線于
兩點。
(Ⅰ)試問在
軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(Ⅱ)若
的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,過點
的兩直線與拋物線
相切于A、B兩點, AD、BC垂直于直線
,垂足分別為D、C.![]()
(1)若
,求矩形ABCD面積;
(2)若
,求矩形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線
上任意一點
到直線
的距離是它到點
距離的
倍;曲線
是以原點為頂點,
為焦點的拋物線.
(Ⅰ)求
,
的方程;
(Ⅱ)過
作兩條互相垂直的直線
,其中
與
相交于點
,
與
相交于點
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線
與橢圓
有公共焦點
,且橢圓過點![]()
.
(1)求橢圓方程;
(2)點
、
是橢圓的上下頂點,點
為右頂點,記過點
、
、
的圓為⊙
,過點
作⊙
的切線
,求直線
的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點
、
,試問直線
是否經(jīng)過定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線
的頂點為原點,其焦點
到直線
的距離為
.設(shè)
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(Ⅰ)求拋物線
的方程;
(Ⅱ)當點
為直線
上的定點時,求直線
的方程;
(Ⅲ)當點
在直線
上移動時,求
的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com