【題目】已知向量
與向量
=(2,﹣1,2)共線,且滿足
=18,(k
+
)⊥(k
﹣
),求向量
及k的值.
【答案】解:∵
,
共線,∴存在實(shí)數(shù)λ,使
=λ
,
∴
=λ
2=λ|
|2 , 解得λ=2.
∴
=2
=(4,﹣2,4).
∵(k
+
)⊥(k
﹣
),
∴(k
+
)(k
﹣
)=(k
+2
)(k
﹣2
)=0,
即(k2﹣4)|
|2=0,
解得k=±2
【解析】由已知得存在實(shí)數(shù)λ,使
=λ
,由此能求出
=2
=(4,﹣2,4).由(k
+
)⊥(k
﹣
),得(k2﹣4)|
|2=0,由此能求出k=±2.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,需要了解若平面
的法向量為
,平面
的法向量為
,要證
,只需證
,即證
;即:兩平面垂直
兩平面的法向量垂直才能得出正確答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
是公差為正數(shù)的等差數(shù)列,其前
項(xiàng)和為
,且
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)數(shù)列
滿足
,
.①求數(shù)列
的通項(xiàng)公式;②是否存在正整數(shù)
,
(
),使得
,
,
成等差數(shù)列?若存在,求出
,
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
的左、右頂點(diǎn)分別為
,上、下頂點(diǎn)分別為
,兩個(gè)焦點(diǎn)分別為
,
,四邊形
的面積是四邊形
的面積的2倍.
![]()
(1)求橢圓
的方程;
(2)過橢圓
的右焦點(diǎn)且垂直于
軸的直線交橢圓
于
兩點(diǎn),
是橢圓
上位于直線
兩側(cè)的兩點(diǎn).若直線
過點(diǎn)
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率
.已知點(diǎn)
到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離為
,求這個(gè)橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生在一門功課的22次考試中,所得分?jǐn)?shù)莖葉圖如圖所示,則此學(xué)生該門功課考試分?jǐn)?shù)的極差與中位數(shù)之和為( ) ![]()
A.117
B.118
C.118.5
D.119.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若
的圖象與
軸交于
兩點(diǎn),起
,求
的取值范圍;
(3)令
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x+1)的定義域?yàn)閇0,1],則函數(shù)f(2x﹣2)的定義域?yàn)椋?/span> )
A.[log23,2]
B.[0,1]
C.![]()
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個(gè)動(dòng)點(diǎn),∠CPB=α,∠DPA=β. (Ⅰ)當(dāng)
最小時(shí),求tan∠DPC的值;
(Ⅱ)當(dāng)∠DPC=β時(shí),求
的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,試判斷函數(shù)
的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)
在
上為增函數(shù),求整數(shù)
的最大值,(可能要用的數(shù)據(jù):
;
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com