【題目】已知雙曲線E:
-
=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),M為OA的中點(diǎn),若以AM為直徑的圓與E的漸近線相切,則雙曲線E的離心率等于( )
A.
B.![]()
C.
D.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬
中,底面ABCD是矩形.
平面
,
,
,以
的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).
![]()
(1)證明:
平面
,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結(jié)論);若不是,請說明理由;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.中國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn)了楊輝三角.在歐洲,帕斯卡在1654年也發(fā)現(xiàn)了這一規(guī)律,所以這個表又叫做帕斯卡三角形.楊輝三角是中國古代數(shù)學(xué)的杰出研究成果之一,它把二項(xiàng)式系數(shù)圖形化,把組合數(shù)內(nèi)在的一些代數(shù)性質(zhì)直觀地從圖形中體現(xiàn)出來,是一種離散型的數(shù)與形的結(jié)合.
第0行 | 1 |
第1行 | 1 1 |
第2行 | 1 2 1 |
第3行 | 1 3 3 1 |
第4行 | 1 4 6 4 1 |
第5行 | 1 5 10 10 5 1 |
第6行 | 1 6 15 20 15 6 1 |
(1)記楊輝三角的前n行所有數(shù)之和為
,求
的通項(xiàng)公式;
(2)在楊輝三角中是否存在某一行,且該行中三個相鄰的數(shù)之比為
?若存在,試求出是第幾行;若不存在,請說明理由;
(3)已知n,r為正整數(shù),且
.求證:任何四個相鄰的組合數(shù)
,
,
,
不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
,求函數(shù)
在
處的切線方程;
(2)若函數(shù)在
和
處有兩個極值點(diǎn),其中
,
.
(i)求實(shí)數(shù)
的取值范圍;
(ii)若
(e為自然對數(shù)的底數(shù)),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系
中,橢圓
:
的右焦點(diǎn)為![]()
(
,
為常數(shù)),離心率等于0.8,過焦點(diǎn)
、傾斜角為
的直線
交橢圓
于
、
兩點(diǎn).
⑴求橢圓
的標(biāo)準(zhǔn)方程;
⑵若
時,
,求實(shí)數(shù)
;
⑶試問
的值是否與
的大小無關(guān),并證明你的結(jié)論.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在多面體
中,底面
是邊長為
的的菱形,
,四邊形
是矩形,平面
平面
,
,
和
分別是
和
的中點(diǎn).
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在R上的偶函數(shù),且當(dāng)
時,
(
).
(1)當(dāng)
時,求
的表達(dá)式:
(2)求
在區(qū)間
的最大值
的表達(dá)式;
(3)當(dāng)
時,若關(guān)于x的方程
(a,
)恰有10個不同實(shí)數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
求證:函數(shù)
是
上的增函數(shù).
若不等式
對
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間之間坐標(biāo)系
中,四棱錐
的底面
在平面
上,其中點(diǎn)
與坐標(biāo)原點(diǎn)
重合,點(diǎn)
在
軸上,
,
,頂點(diǎn)
在
軸上,且
,
.
![]()
(1)求直線
與平面
所成角的大小;
(2)設(shè)
為
的中點(diǎn),點(diǎn)
在
上,且
,求二面角
的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com