【題目】在四面體SABC中若三條側(cè)棱SA,SB,SC兩兩互相垂直,且SA=1,SB=
,SC=
,則四面體ABCD的外接球的表面積為( )
A.8πB.6πC.4πD.2π
【答案】B
【解析】
由題意一個(gè)四面體SABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,可知,四面體SABC是長(zhǎng)方體的一個(gè)角,擴(kuò)展為長(zhǎng)方體,兩者的外接球相同,長(zhǎng)方體的對(duì)角線就是球的直徑,求出直徑即可求出球的表面積.
四面體SABC中,共頂點(diǎn)S的三條棱兩兩相互垂直,且其長(zhǎng)分別為1,
,
,
所以四面體SABC是長(zhǎng)方體的一個(gè)角,擴(kuò)展為長(zhǎng)方體,
又四面體SABC的四個(gè)頂點(diǎn)同在一個(gè)球面上,
而四面體SABC的外接球與長(zhǎng)方體的外接球相同,長(zhǎng)方體的對(duì)角線就是球的直徑,
所以球的直徑為:
,
外接球的表面積為:4π×R2=6π
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦了一場(chǎng)主題為“愛詩(shī)詞、愛祖國(guó)”的詩(shī)詞知識(shí)競(jìng)賽,從參賽的全體學(xué)生中抽出30人的成績(jī)作為樣本.對(duì)這30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并按
、
、
、
、
、
分組,得到如圖所示的頻率分布直方圖.
![]()
(1)求圖中實(shí)數(shù)
的值;
(2)估計(jì)參加這次知識(shí)競(jìng)賽的學(xué)生的平均成績(jī)及成績(jī)的中位數(shù)(平均成績(jī)用每組中點(diǎn)值做代表,結(jié)果均保留一位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
點(diǎn)的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出點(diǎn)
的直角坐標(biāo)及曲線
的直角坐標(biāo)方程;
(2)若
為曲線
上的動(dòng)點(diǎn),求
的中點(diǎn)
到直線
:
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓
:
,點(diǎn)
是圓
內(nèi)一個(gè)定點(diǎn),點(diǎn)
是圓上任意一點(diǎn),線段
的垂直平分線
和半徑
相交于點(diǎn)
.當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),點(diǎn)
的軌跡為曲線
.
![]()
(1)求曲線
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線
與曲線
相交于
兩點(diǎn)(點(diǎn)
在
兩點(diǎn)之間).是否存在直線
使得
?若存在,求直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種推理中是演繹推理的為( )
A. 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電
B. 猜想數(shù)列
的通項(xiàng)公式為![]()
C. 半徑為
的圓的面積
,則單位圓的面積![]()
D. 由平面直角坐標(biāo)系中圓的方程為
,推測(cè)空間直角坐標(biāo)系中球的方程為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系.己知直線
的直角坐標(biāo)方程為
,曲線C的極坐標(biāo)方程為
.
(1)設(shè)t為參數(shù),若
,求直線
的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)已知:直線
與曲線C交于A,B兩點(diǎn),設(shè)
,且
,
,
依次成等比數(shù)列,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在
處切線的斜率為
,求此切線方程;
(2)若
有兩個(gè)極值點(diǎn)
,求
的取值范圍,并證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數(shù)列{an-1}為等比數(shù)列.
(2)若bn=anlog2(an-1),數(shù)列{bn}的前項(xiàng)和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓
:
的離心率是
,長(zhǎng)軸是圓
:
的直徑.點(diǎn)
是橢圓
的下頂點(diǎn),
,
是過(guò)點(diǎn)
且互相垂直的兩條直線,
與圓
相交于
,
兩點(diǎn),
交橢圓
于另一點(diǎn)
.
![]()
(1)求橢圓
的方程;
(2)當(dāng)
的面積取最大值時(shí),求直線
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com