(本題滿分16分)已知定義在
上的函數(shù)
,其中
為常數(shù).
(1)若
是函數(shù)
的一個(gè)極值點(diǎn),求
的值;
(2)若函數(shù)
在區(qū)
間
上是增函數(shù),求
的取值范圍;
(3)若函數(shù)
,在
處取得最大值,求正數(shù)
的取值范圍.
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/d/1wmcx3.gif" style="vertical-align:middle;" />是函數(shù)
的一個(gè)極值點(diǎn),
所以
,即
,………2分
經(jīng)檢驗(yàn),當(dāng)
時(shí),
是函數(shù)
的一個(gè)極值點(diǎn). ………3分
(2)由題,
在
恒成立, ………5分
即
在
恒成立,所以
, ………6分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/e/lmtbj1.gif" style="vertical-align:middle;" />在
恒成立上遞減,所以當(dāng)
時(shí),
, ………7分
所以
. ………8分
(3)由題,
在
上恒成立且等號(hào)必能取得,
即
-----(*)在
上恒成立且等號(hào)必能取得,………10分
當(dāng)
時(shí),不等式(*)顯然恒成立且取得了等號(hào) ………11分
當(dāng)
時(shí),不等式(*)可化得
,所以
………12分
考察函數(shù)![]()
令
,則
,所以
,
因?yàn)楹瘮?shù)
在
上遞增,所以當(dāng)
時(shí),
………14分
所以
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/5/xghne1.gif" style="vertical-align:middle;" />,所以
. ………16分
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
。
(I)求
的單調(diào)區(qū)間;
(II)若對(duì)于所有的
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
函數(shù)
.
(1)求證函數(shù)
在區(qū)間
上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)
的近似值(誤差不超過(guò)
);(參考數(shù)據(jù)
,
,
)
(2)當(dāng)
時(shí),若關(guān)于
的不等式
恒成立,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
已知二次函數(shù)![]()
(
,c為常數(shù)且1《c《4)的導(dǎo)函數(shù)的圖象如圖所示:![]()
(
1).求
的值;
(2)記
,求
在
上的最大值
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=logax(a>0且a≠1),如果對(duì)于任意的x∈[
,2]都有|f(x)|≤1
成立,試求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)
.
(Ⅰ)求函數(shù)
的定義域;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
時(shí),若存
在使得
成立,求
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)若函數(shù)
.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間。
(2)求
在區(qū)間[-3,4]
上的值域
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中![]()
(1)若曲線![]()
在點(diǎn)
處的切線方程為y=3x+1,求函數(shù)
的解析式;
(2)討論函數(shù)
的單調(diào)性;[來(lái)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com