【題目】若關于x的方程|x4-x3|=ax在R上存在4個不同的實根,則實數a的取值范圍為( )
A.
B.
C.
D.
【答案】A
【解析】
根據方程和函數的關系轉化為函數,利用參數分離法,構造函數,求函數的導數,研究函數的單調性和極值,利用數形結合進行求解即可.
當x=0時,0=0,∴0為方程的一個根.
當x>0時,方程|x4﹣x3|=ax等價為a=|x3﹣x2|,
令f(x)=x3﹣x2,f′(x)=3x2﹣2x,
由f′(x)<0得0<x<
,由f′(x)>0得x<0或x>
,
∴f(x)在(0,
)上遞減,在
上遞增,又f(1)=0,
∴當x=
時,函數f(x)取得極小值f(
)=﹣
,則|f(x)|取得極大值|f(
)|=
,
∴設
的圖象如下圖所示,
則由題可知當直線y=a與g(x)的圖象有3個交點時0<a<
,
此時方程|x4﹣x3|=ax在R上存在4個不同的實根,
故
.
故答案為:A
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在區間(0,+∞)內的單調函數,且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設f′(x)為f(x)的導函數,則函數g(x)=f(x)﹣f′(x)的零點個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用半徑為R的圓鐵皮剪一個內接矩形,再以內接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內接矩形的面積比為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐
中,
平面
,底面
是菱形,
.
![]()
(Ⅰ)求證:
平面![]()
(Ⅱ)若
求
與
所成角的余弦值;
(Ⅲ)當平面
與平面
垂直時,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=2米,AD=1米.
![]()
(1)要使矩形AMPN的面積大于9平方米,則DN的長應在什么范圍內?
(2)當DN的長度為多少時,矩形花壇AMPN的面積最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區間[2a,a+1]上不單調,求實數a的取值范圍;
(3)在區間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)假設關于某設備使用年限x(年)和所支出的維修費用y(萬元)有如下統計資料:
| 2 | 3 | 4 | 5 | 6 |
| 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知,y對x呈線性相關關系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com