【題目】在直角坐標系
中,過點
作直線
交
軸于A點、交
軸于B點,且P位于AB兩點之間.
(1)若
,求直線
的方程;
(2)求當
取得最小值時直線
的方程;
(3)當
面積最小值時的直線方程.
【答案】(1)
;(2)
;(3)![]()
【解析】
設直線
可求出
,
.結合
位于
之間,建立關于
的不等式,可得
.
(1)由
的坐標,得出向量
和
坐標,從而將
化為關于
的方程,解出
值,即得直線
的方程;
(2)由向量數量積的坐標運算公式,得出
關于
的表達式,再用基本不等式得到
取得最小值時
的斜率
,從而得到直線
的方程.
(3)求出
,再利用基本不等式求最小值,從而得到等號成立的條件,即
,由此能求出當
面積最小值時的直線方程.
由題意知,直線
的斜率
存在且
,
設
,得令
,得
,所以
,
再令
,得
,所以
,
∵點
位于
兩點之間,∴
且
,解得
.
∴
,
,
(1)∵
,∴
,解得
.
∴直線
的方程為
,整理得
.
(2)∵
,∴
,
當
,即
時,等號成立.
∴當
取得最小值時直線
的方程為
,
化為一般式:
.
(3)∵
,
,
,
∴
,
當
時,即
時,取等號,
∴當
面積最小值時的直線方程為
,即
.
科目:高中數學 來源: 題型:
【題目】一個經銷鮮花產品的微店,為保障售出的百合花品質,每天從云南鮮花基地空運固定數量的百合花,如有剩余則免費分贈給第二天購花顧客,如果不足,則從本地鮮花供應商處進貨.今年四月前10天,微店百合花的售價為每支2元,云南空運來的百合花每支進價1.6元,本地供應商處百合花每支進價1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.
![]()
(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數和眾數,并完成頻率分布直方圖;
(Ⅱ)預計四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進貨價格與售價均不變,請根據(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數據用該組區間的中點值作代表,位于各區間的頻率代替位于該區間的概率),微店每天從云南固定空運250支,還是255支百合花,四月后20天百合花銷售總利潤會更大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合
,其中
,
.如果集合
滿足:對于任意的
,都有
,那么稱集合
具有性質
.
(Ⅰ)寫出一個具有性質
的集合
;
(Ⅱ)證明:對任意具有性質
的集合
,
;
(Ⅲ)求具有性質
的集合
的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查消費者的維權意識,青島二中的學生記者在五四廣場隨機調查了120名市民,按他們的年齡分組:第1組[20.30),第2組[30,40),第3組[40,50),第4組[50,60),第5組[60,70),得到的頻率分布直方圖如圖所示.
![]()
(1)若要從被調查的市民中選1人采訪,求被采訪人恰好在第2組或第5組的概率;
(2)已知第1組市民中男性有2人,學生要從第1組中隨機抽取3名市民組成維權志愿者服務隊,求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C:
1(a>b>0)的右焦點為F,A(2,0)是橢圓的右頂點,過F且垂直于x軸的直線交橢圓于P,Q兩點,且|PQ|=3.
![]()
(1)求橢圓的方程;
(2)過點A的直線l與橢圓交于另一點B,垂直于l的直線l′與直線l交于點M,與y軸交于點N,若FB⊥FN且|MO|=|MA|,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,在等腰梯形
中,
,
,
分別為
,
的中點,
,
為
中點現將四邊形
沿
折起,使平面
平面
,得到如圖②所示的多面體在圖②中,
![]()
(1)證明:
;
(2)求二面角
的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為3的菱形
中,已知
,且
.將梯形
沿直線
折起,使
平面
,如圖2,
分別是
上的點.
![]()
(1)求證:圖2中,平面
平面
;
(2)若平面
平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系
中,直線
的參數方程為
(
為參數,
),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)若
,求直線
的普通方程及曲線
的直角坐標方程;
(Ⅱ)若直線
與曲線
有兩個不同的交點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在
,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
![]()
(1) 經計算估計這組數據的中位數;
(2)現按分層抽樣從質量為
,
的芒果中隨機抽取
個,再從這
個中隨機抽取
個,求這
個芒果中恰有
個在
內的概率.
(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有
個,經銷商提出如下兩種收購方案:
A:所以芒果以
元/千克收購;
B:對質量低于
克的芒果以
元/個收購,高于或等于
克的以
元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com