【題目】給出下列命題:
(1)若函數(shù)
在
上是減函數(shù),則
;
(2)直線
與線段
相交,其中
,
,則
的取值范圍是
;
(3)點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)為
,則
的坐標(biāo)為
;
(4)直線
與拋物線
交于
,
兩點(diǎn),則以
為直徑的圓恰好與直線
相切.
其中正確的命題有__________.(把所有正確的命題的序號(hào)都填上)
【答案】(3)(4)
【解析】
對(duì)四個(gè)命題逐一分析,由此確定命題正確的選項(xiàng).
對(duì)于(1),依題意
在區(qū)間
上恒成立,所以
,所以
,故(1)錯(cuò)誤.
對(duì)于(2),直線
過
,而點(diǎn)
在直線
的兩側(cè),所以
的取值范圍是
,即
,故(2)錯(cuò)誤.
對(duì)于(3)直線
的斜率為
,
,
;
的中點(diǎn)為
,點(diǎn)
滿足直線
.所以(3)正確.
對(duì)于(4),拋物線
的焦點(diǎn)為
,準(zhǔn)線為
,直線
過焦點(diǎn)
.直線
與拋物線相交與
兩點(diǎn),根據(jù)拋物線的定義可知,AB中點(diǎn)到拋物線準(zhǔn)線距離等于AB一半,所以
為直徑的圓恰好與拋物線的準(zhǔn)線
相切,故(4)正確.
故答案為:(3)(4)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
,
,全集
.
(1)當(dāng)
時(shí),求
,
;
(2)若
是
成立的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)求
在區(qū)間
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
與
的情況如上:
所以,
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
.
(Ⅱ)當(dāng)
,即
時(shí),函數(shù)
在
上單調(diào)遞增,
所以
在區(qū)間
上的最小值為
.
當(dāng)
,即
時(shí),
由(Ⅰ)知
在
上單調(diào)遞減,在
上單調(diào)遞增,
所以
在區(qū)間
上的最小值為
.
當(dāng)
,即
時(shí),函數(shù)
在
上單調(diào)遞減,
所以
在區(qū)間
上的最小值為
.
綜上,當(dāng)
時(shí),
的最小值為
;
當(dāng)
時(shí),
的最小值為
;
當(dāng)
時(shí),
的最小值為
.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線
的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)
為拋物線
上一點(diǎn).
(1)求
的方程;
(2)若點(diǎn)
在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
![]()
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織的最新研究報(bào)告顯示,目前中國近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計(jì)戶外暴露時(shí)間(單位:小時(shí))與近視發(fā)病率的關(guān)系,對(duì)某中學(xué)一年級(jí)200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):
每周累積戶外暴露時(shí)間(單位:小時(shí)) |
|
|
|
| 不少于28小時(shí) |
近視人數(shù) | 21 | 39 | 37 | 2 | 1 |
不近視人數(shù) | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計(jì)戶外暴露時(shí)間不少于28小時(shí)的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;
(2)若每周累計(jì)戶外暴露時(shí)間少于14個(gè)小時(shí)被認(rèn)證為“不足夠的戶外暴露時(shí)間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時(shí)間與近視有關(guān)系?
近視 | 不近視 | |
足夠的戶外暴露時(shí)間 | ||
不足夠的戶外暴露時(shí)間 |
附:![]()
P | 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線
相切.
(Ⅰ)求圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AN垂直于x軸于點(diǎn)N,若動(dòng)點(diǎn)Q滿足![]()
(其中m為非零常數(shù)),試求動(dòng)點(diǎn)Q的軌跡方程;
(Ⅲ)在(Ⅱ)的結(jié)論下,當(dāng)m=
時(shí),得到動(dòng)點(diǎn)Q的軌跡為曲線C,與l1垂直的直線l與曲線C交于B,D兩點(diǎn),求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)![]()
到定點(diǎn)
的距離比它到
軸的距離大
.
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)設(shè)點(diǎn)
(
為常數(shù)),過點(diǎn)
作斜率分別為
的兩條直線
與
,
交曲線
于
兩點(diǎn),
交曲線
于
兩點(diǎn),點(diǎn)
分別是線段
的中點(diǎn),若
,求證:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題
對(duì)任意實(shí)數(shù)
,不等式
恒成立;命題
方程
表示焦點(diǎn)在
軸上的雙曲線.
(1)若命題
為真命題,求實(shí)數(shù)
的取值范圍;
(2)若命題:“
”為真命題,且“
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形
中,
,
,
,
為
上一點(diǎn),且
,
為
的中點(diǎn).沿
將梯形折成大小為
的二面角
,若
內(nèi)(含邊界)存在一點(diǎn)
,使得
平面
,則
的取值范圍是__________.
![]()
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com