【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且cosA=
,cosB=
.
(1)求sinC的值;
(2)若a-b=4-2
,求△ABC的面積.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,對稱軸為直線
的拋物線
與
軸交于
兩點,其中點
的坐標為
,與
軸交于點
,作直線
.
![]()
(1)求拋物線的解析式;
(2)如圖,點
是直線
下方拋物線上的一個動點,連結
.當
面積最大時,求點
的坐標;
(3)如圖,在(2)的條件下,過點
作于
點
交
軸于點
將
繞點
旋轉得到
在旋轉過程中,當點
或點
落在
軸上(不與點![]()
重合)時,將
沿射線
平移得到
,在平移過程中,平面內是否存在點
使得四邊形
是菱形?若存在,請直接寫出所有符合條件的點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓
,以橢圓
的焦點為頂點作相似橢圓
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設直線
與橢圓
交于
兩點,且與橢圓
僅有一個公共點,試判斷
的面積是否為定值(
為坐標原點)?若是,求出該定值;若不是,請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一種密碼鎖的密碼設置是在正
邊形
的每個頂點處賦值0和1兩個數中的一個,同時,在每個頂點處染紅、藍兩種顏色之一,使得任意相鄰的兩個頂點的數字或顏色中至少有一個相同.問:該種密碼鎖共有多少種不同的密碼設置?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】焦距為
的橢圓
(
),如果滿足“
”,則稱此橢圓為“等差橢圓”.
(1)如果橢圓
(
)是“等差橢圓”,求
的值;
(2)如果橢圓
(
)是“等差橢圓”,過
作直線
與此“等差橢圓”只有一個公共點,求此直線的斜率;
(3)橢圓
(
)是“等差橢圓”,如果焦距為12,求此“等差橢圓”的方程;
(4)對于焦距為12的“等差橢圓”,點
為橢圓短軸的上頂點,
為橢圓上異于
點的任一點,
為
關于原點
的對稱點(
也異于
),直線![]()
分別與
軸交于![]()
兩點,判斷以線段
為直徑的圓是否過定點?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數;
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知從境外回國的8位同胞中有1位被新冠肺炎病毒感染,需要通過核酸檢測是否呈陽性來確定是否被感染.下面是兩種檢測方案:
方案一:逐個檢測,直到能確定被感染者為止.
方案二:將8位同胞平均分為2組,將每組成員的核酸混合在一起后隨機抽取一組進行檢測,若檢測呈陽性,則表明被感染者在這4位當中,然后逐個檢測,直到確定被感染者為止;若檢測呈陰性,則在另外一組中逐個進行檢測,直到確定被感染者為止.
(1)根據方案一,求檢測次數不多于兩次的概率;
(2)若每次核酸檢測費用都是100元,設方案二所需檢測費用為
,求
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系
中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線
的普通方程和曲線
的直角坐標方程;
(2)已知點
是曲線
上的動點,求點
到曲線
的最小距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com