(本題12分)
已知橢圓
的右焦點為F,上頂點為A,P為C
上任一點,MN是圓
的一條直徑,若與AF平行且在y軸上的截距為
的直線
恰好與圓
相切.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)若
的最大值為49,求橢圓C
的方程.
科目:高中數學 來源: 題型:解答題
(本題13分)設橢圓
的左右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于
點,且
是
的中點.![]()
(1)求橢圓的離心率;
(2)若過點
的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過右焦點
作斜率為
的直線
與橢圓相交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在坐標軸上的橢圓
,它的離心率為
,一個焦點和拋物線
的焦點重合,過直線
上一點M引橢圓
的兩條切線,切點分別是A,B.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若在橢圓
上的點
處的橢圓的切線方程是
. 求證:直線
恒過定點
;并出求定點
的坐標.
(Ⅲ)是否存在實數
,使得
恒成立?(點
為直線
恒過的定點)若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)已知橢圓
經過點
,且其右焦點與拋物線
的焦點F重合.
(Ⅰ)求橢圓
的方程;
(II)直線
經過點
與橢圓
相交于A、B兩點,與拋物線
相交于C、D兩點.求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,斜率為1的直線過拋物線
的焦點F,與拋物線交于兩點A,B,![]()
(1)若|AB|=8,求拋物線
的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求
的面積S的最大值;
(3)設P是拋物線
上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題16分)設雙曲線:
的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2
,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓![]()
的離心率為
,且橢圓上一點與橢圓的兩個焦點構成的三角形周長為
.
(1)求橢圓
的方程;
(2)設直線
與橢圓
交于
兩點,且以
為直徑的圓過橢圓的右頂點
,
求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分9分)已知頂點在原點,焦點在
軸上的拋物線過點
.
(1)求拋物線的標準方程;
(2)過點
作直線交拋物線于
兩點,使得
恰好平分線段
,求直線
的方程
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com