【題目】如圖1,在直角梯形
中,AB∥CD,
,且
.現以
為一邊向梯形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,如圖2.
![]()
![]()
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點D到平面BEC的距離.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,已知
是曲線
:
上的動點,將
繞點
順時針旋轉
得到
,設點
的軌跡為曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線
,
的極坐標方程;
(2)在極坐標系中,點
,射線
與曲線
,
分別相交于異于極點
的
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且![]()
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
中心在原點,焦點在坐標軸上,直線
與橢圓
在第一象限內的交點是
,點
在
軸上的射影恰好是橢圓
的右焦點
,橢圓
另一個焦點是
,且
.
(1)求橢圓
的方程;
(2)直線
過點
,且與橢圓
交于
兩點,求
的內切圓面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
:
上一點
到其焦點
的距離為5.
(1)求
與
的值;
(2)設動直線
與拋物線
相交于
,
兩點,問:在
軸上是否存在與
的取值無關的定點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
:
上一點
到其焦點
的距離為5.
(1)求
與
的值;
(2)設動直線
與拋物線
相交于
,
兩點,問:在
軸上是否存在與
的取值無關的定點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為正方形,
底面
,
,
為線段
的中點.
![]()
(1)若
為線段
上的動點,證明:平面
平面
;
(2)若
為線段
,
,
上的動點(不含
,
),
,三棱錐
的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司新上一條生產線,為保證新的生產線正常工作,需對該生產線進行檢測,現從該生產線上隨機抽取100件產品,測量產品數據,用統計方法得到樣本的平均數
,標準差
,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。
![]()
(1)從該生產線加工的產品中任意抽取一件,記其數據為
,依據以下不等式評判(
表示對應事件的概率)
①![]()
②![]()
③![]()
評判規則為:若至少滿足以上兩個不等式,則生產狀況為優,無需檢修;否則需檢修生產線,試判斷該生產線是否需要檢修;
(2)將數據不在
內的產品視為次品,從該生產線加工的產品中任意抽取2件,次品數記為
,求
的分布列與數學期望
。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com