【題目】如圖,在四棱錐
中,
平面
,
,且,
,
,
為線段
上一點,
,且
為
的中點.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=
.
(1)求角B的大小;
(2)若BD為AC邊上的中線,cosA=
,BD=
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=
,g(x)=
.
(1)當1≤x<2時,求g(x);
(2)當x∈R時,求g(x)的解析式,并畫出其圖象; ![]()
(3)求方程xf[g(x)]=2g[f(x)]的解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,橢圓
:
的離心率為
,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過原點的直線與橢圓
交于
,
兩點(
,
不是橢圓
的頂點),點
在橢圓
上,且
.直線
與
軸、
軸分別交于
,
兩點.設直線
,
的斜率分別為
,
,證明存在常數
使得
,并求出
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}為單調遞減的等差數列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比數列.
(1)求數列{an}的通項公式;
(2)設bn=|an|,求數列{bn}的前項n和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區上年度電價為0.8元/kWh,年用電量為akWh,本年度計劃將電價降到0.55 元/kWh至0.75元/kWh之間,而用戶期待電價為0.4元/kWh,下調電價后新增加的用電量與實際電價和用戶期望電價的差成反比(比例系數為K),該地區的電力成本為0.3元/kWh.(注:收益=實際用電量×(實際電價﹣成本價)),示例:若實際電價為0.6元/kWh,則下調電價后新增加的用電量為
元/kWh)
(1)寫出本年度電價下調后,電力部門的收益y與實際電價x的函數關系;
(2)設K=0.2a,當電價最低為多少仍可保證電力部門的收益比上一年至少增長20%?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com