【題目】設(shè)M、N、T是橢圓
上三個點(diǎn),M、N在直線x=8上的攝影分別為M1、N1 .
(Ⅰ)若直線MN過原點(diǎn)O,直線MT、NT斜率分別為k1 , k2 , 求證k1k2為定值.
(Ⅱ)若M、N不是橢圓長軸的端點(diǎn),點(diǎn)L坐標(biāo)為(3,0),△M1N1L與△MNL面積之比為5,求MN中點(diǎn)K的軌跡方程.
【答案】解:(Ⅰ)設(shè)M(p,q),N(﹣p,﹣q),T(x0 , y0),則h1h2=
, 又
兩式相減得
,
即h1h2=
=﹣
,
(Ⅱ)設(shè)直線MN與x軸相交于點(diǎn)R(r,0),s△MNL=
×|r﹣3||yM﹣yN|
=
|
.
由于△M1N1L與△MNL面積之比為5且|yM﹣yN|=|
,得
=5 ![]()
,r=4(舍去)或r=2.
即直線MN經(jīng)過點(diǎn)F(2,0).設(shè)M(x1 , y1),N(x2 , y2),K(x0 , y0)
①當(dāng)直線MN垂直于x軸時,弦MN中點(diǎn)為F(2,0);
② 當(dāng)直線MN與x軸不垂直時,設(shè)MN的方程為y=k(x﹣2),則
聯(lián)立
.(3+4k2)x2﹣16k2x+16k2﹣48=0
.
x0=
. ![]()
消去k,整理得(x0﹣1)2+
=1(y0≠0).
綜上所述,點(diǎn)K的軌跡方程為(x﹣1)2+
=1(x>0)
【解析】(Ⅰ)設(shè)M(p,q),N(﹣p,﹣q),T(x0 , y0),則h1h2=
, 又
即可得h1h2(Ⅱ)設(shè)直線MN與x軸相交于點(diǎn)R(r,0),根據(jù)面積之比得r
即直線MN經(jīng)過點(diǎn)F(2,0).設(shè)M(x1 , y1),N(x2 , y2),K(x0 , y0)
分①當(dāng)直線MN垂直于x軸時,②當(dāng)直線MN與x軸不垂直時,設(shè)MN的方程為y=k(x﹣2)
x0= /span>
.
消去k,整理得(x0﹣1)2+
=1(y0≠0).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x﹣φ)﹣
sin(2x﹣φ)(|φ|<
)的圖象向右平移
個單位后關(guān)于y軸對稱,則f(x)在區(qū)間
上的最小值為( )
A.﹣1
B.![]()
C.![]()
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足2f(4﹣x)=f(x)+x2﹣2,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>
,且當(dāng)x∈[
,a]時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)將點(diǎn)A(2,1)繞原點(diǎn)按逆時針方向旋轉(zhuǎn)
,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ex , f(x)=g(x)﹣h(x),且g(x)為偶函數(shù),h(x)為奇函數(shù),若存在實(shí)數(shù)m,當(dāng)x∈[﹣1,1]時,不等式mg(x)+h(x)≥0成立,則m的最小值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|ax﹣2|.
(Ⅰ)當(dāng)a=2時,解不等式f(x)>x+1;
(Ⅱ)若關(guān)于x的不等式f(x)+f(﹣x)<
有實(shí)數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1. ![]()
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為
,求線段PD的長度.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com