【題目】設入射光線沿直線y=2x+1射向直線y=x,則被y=x反射后,反射光線所在的直線方程是( )
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)(x∈R)的部分圖象如圖所示.
(Ⅰ)求函數f(x)的解析式并求函數f(x)的單調遞增區間;
(Ⅱ)求函數f(x)的最小值并指出函數f(x)取最小值時相應的x的值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當|MN|=2
時,求直線l方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在區間[﹣1,1]上的奇函數,且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0時,有
<0.
(1)解不等式f(x+
)<f(1﹣x);
(2)若f(x)≤t2﹣2at+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線
:
(
為參數)和直線
:
(
為參數).
(1)將曲線
的方程化為普通方程;
(2)設直線
與曲線
交于
兩點,且
為弦
的中點,求弦
所在的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
(1)若直線l過點A(4,0),且被圓C1截得的弦長為2
,求直線l的方程
(2)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2 , 它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,求所有滿足條件的點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)
某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區間的頻率代替最高氣溫位于該區間的概率。
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.學#科@網
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經》和《易經》里對二十四節氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其他節氣的晷影長則是按照等差數列的規律計算得出的.下表為《周髀算經》對二十四節氣晷影長的記錄,其中
寸表示115寸
分(1寸=10分).
節氣 | 冬至 | 小寒(大雪) | 大寒(小雪) | 立春(立冬) | 雨水(霜降) | 驚蟄(寒露) | 春分(秋分) |
晷影長(寸) | 135 |
|
|
|
|
| 75.5 |
節氣 | 清明(白露) | 谷雨(處暑) | 立夏(立秋) | 小滿(大暑) | 芒種(小暑) | 夏至 | |
晷影長(寸) |
|
|
|
|
| 16.0 |
已知《易知》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經》中所記錄的驚蟄的晷影長應為__________寸.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com