【題目】已知點(diǎn)
及圓
.
(1)若直線
過點(diǎn)
且與圓心
的距離為1,求直線
的方程;
(2)設(shè)過點(diǎn)
的直線
與圓
交于
兩點(diǎn),當(dāng)
時(shí),求以線段
為直徑的圓
的方程;
(3)設(shè)直線
與圓
交于
兩點(diǎn),是否存在實(shí)數(shù)
,使得過點(diǎn)
的直線
垂直平分弦
?若存在,求出實(shí)數(shù)
的值;若不存在,請說明理由.
【答案】(1)
或
;(2)
;(3)不存在.
【解析】
(1)設(shè)出直線方程,結(jié)合點(diǎn)到直線距離公式,計(jì)算參數(shù),即可。(2)證明得到點(diǎn)P為MN的中點(diǎn),建立圓方程,即可。(3)將直線方程代入圓方程,結(jié)合交點(diǎn)個(gè)數(shù),計(jì)算a的范圍,計(jì)算直線
的斜率,計(jì)算a的值,即可。
(1)直線
斜率存在時(shí),設(shè)直線
的斜率為
,則方程為
,即
.又圓
的圓心為
,半徑
,由
,解得
.
所以直線方程為
,即
.
當(dāng)
的斜率不存在時(shí),
的方程為
,經(jīng)驗(yàn)證
也滿足條件.
即直線
的方程為
或
.
(2)由于
,而弦心距
,
所以
.
所以
恰為
的中點(diǎn).
故以
為直徑的圓
的方程為
.
(3)把直線
代入圓
的方程,消去
,整理得
.
由于直線
交圓
于
兩點(diǎn),
故
,
即
,解得
.
則實(shí)數(shù)
的取值范圍是
.
設(shè)符合條件的實(shí)數(shù)
存在,
由于
垂直平分弦
,故圓心
必在
上.所以
的斜率
,
而
,
所以
.由于
,
故不存在實(shí)數(shù)
,使得過點(diǎn)
的直線
垂直平分弦
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐
中,
,
平面ABCD,且
,點(diǎn)E是PD的中點(diǎn).
求證:
;
求證:
平面AEC.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)當(dāng)
時(shí),解不等式
;
(2)若關(guān)于
的方程
的解集中恰有兩個(gè)元素,求
的取值范圍;
(3)設(shè)
,若對任意
,函數(shù)
在區(qū)間
上的最大值與最小值的和不大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
①集合
與集合
是相等集合;
②不存在實(shí)數(shù)
,使
為奇函數(shù);
③若
,且f(1)=2,則
;
④對于函數(shù)
在同一直角坐標(biāo)系中,若
,則函數(shù)
的圖象關(guān)于直線
對稱;
⑤對于函數(shù)
在同一直角坐標(biāo)系中,函數(shù)
與
的圖象關(guān)于直線
對稱;其中正確說法是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線方程.
(1)經(jīng)過點(diǎn)A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;
(2)過點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長為12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(2﹣sin(2x+
),﹣2),
=(1,sin2x),f(x)=![]()
, (x∈[0,
])
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若f(
)=1,b=1,c=
, 求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把數(shù)列
的各項(xiàng)按順序排列成如下的三角形狀,
![]()
記
表示第
行的第
個(gè)數(shù),例如
=
,若
=
,則
( )
A. 36 B. 37 C. 38 D. 45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(2)是否存在整數(shù)
,
,使得
的解集恰好是
,若存在,求出
,
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銀川一中為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,抽取在校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成
,
六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 |
| ||
女 |
| ||
合計(jì) |
(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的
列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
(2)在
這兩組中采取分層抽樣,抽取6人,再從這6名學(xué)生中隨機(jī)抽取2人參加體育知識問卷調(diào)查,求這2人中一人來自“課外體育達(dá)標(biāo)”和一人來自“課外體育不達(dá)標(biāo)”的概率.
![]()
附參考公式與:![]()
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com