【題目】如圖,在直三棱柱
中,點
分別在棱
上(均異于端點),且
.
![]()
(1)求證:平面
平面
;
(2)求證:
平面
.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1) 利用面面垂直的判定定理,只需證明一個平面經(jīng)過另一個平面的垂直,證明
平面
即可;(2 )利用線面平行的判定定理,只需證明平面外的直線平行于平面內(nèi)的一條直線,證明
即可.
試題解析:![]()
(1)在直三棱柱
中,
平面
,因為
平面
,所以
.
又
,
,
平面
,所以
平面
,
又
平面
,所以平面
平面
;
(2)因為
,由(1)同理可得,
平面
,
又由(1)知,
平面
,
所以
,
又
平面
,
平面
,
所以
平面
.
【方法點晴】本題主要考查線面平行的判定定理、面面垂直的判定定理,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列
的前n項和為
,滿足
,且
,公比大于1的等比數(shù)列
滿足
,
.
(1)求證數(shù)列
是等差數(shù)列,并求其通項公式;
(2)若
,求數(shù)列
的前n項和
;
(3)在(2)的條件下,若
對一切正整數(shù)n恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
(0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為
,其上下頂點分別為
,點
.
(1)求橢圓
的方程以及離心率;
(2)點
的坐標為
,過點
的任意作直線
與橢圓
相交于
兩點,設(shè)直線
的斜率依次成等差數(shù)列,探究
之間是否存在某種數(shù)量關(guān)系,若是請給出
的關(guān)系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域為[-1,5],部分對應(yīng)值如下表,
的導(dǎo)函數(shù)
的圖象如圖所示,下列關(guān)于
的命題:
| -1 | 0 | 4 | 5 |
| 1 | 2 | 2 | 1 |
![]()
①函數(shù)
的極大值點為0,4;
②函數(shù)
在[0,2]上是減函數(shù);
③如果當
時,
的最大值是2,那么
的最大值為4;
④當
時,函數(shù)
有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
為矩形,直線
平面
,
,
,
,點
在棱
上.
![]()
(1)求證:
;
(2)若
是
的中點,求異面直線
與
所成角的余弦值;
(3)若![]()
![]()
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率
,左、右焦點分別為
,
,點
滿足:
在線段
的中垂線上.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)若斜率為
(
)的直線
與
軸、橢圓
順次相交于點
、
、
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 “一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認知程度高),現(xiàn)從參賽者中抽取了
人,按年齡分成5組(第一組:
,第二組
,第三組:
,第四組:
,第五組:
),得到如圖所示的頻率分布直方圖,已知第一組有6人.
![]()
(1)求
;
(2)求抽取的
人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1-5組,從這5個按年齡分的組合5個按職業(yè)分的組中每組各選派1人參加知識競賽代表相應(yīng)組的成績,年齡組中1-5組的成績分別為93,96,97,94,90,職業(yè)組中1-5組的成績分別為93,98,94,95,90.
(i)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;
(ii)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認知程度,并談?wù)勀愕母邢?/span>.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com