【題目】【2017安徽淮北二!選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中, 以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系, 圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(t為參數(shù)), 直線
和圓
交于
兩點(diǎn)。
(Ⅰ)求圓心的極坐標(biāo);
(Ⅱ)直線
與
軸的交點(diǎn)為
,求
.
【答案】(1)
(2)8
【解析】試題分析:(1)利用
將圓
的極坐標(biāo)方程化為直角坐標(biāo)方程,根據(jù)代入消元法將直線
的參數(shù)方程化為普通方程;(2)因?yàn)橹本
恰好經(jīng)過圓C的圓心,所以![]()
試題解析:(1)由
,得
,得
,故圓
的普通方程為
,所以圓心坐標(biāo)為
,圓心的極坐標(biāo)為
.
(2)把
代入
得
,
所以點(diǎn)A、B對(duì)應(yīng)的參數(shù)分別為
令
得點(diǎn)
對(duì)應(yīng)的參數(shù)為![]()
所以
法二:把
化為普通方程得![]()
令
得點(diǎn)P坐標(biāo)為
,又因?yàn)橹本
恰好經(jīng)過圓C的圓心,
故![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017鎮(zhèn)江一模】如圖,某公園有三條觀光大道
圍成直角三角形,其中直角邊
,
斜邊
.現(xiàn)有甲、乙、丙三位小朋友分別在
大道上嬉戲,所在位
置分別記為點(diǎn)
.
(1)若甲乙都以每分鐘
的速度從點(diǎn)
出發(fā)在各自的大道上奔走,到大道的另一端
時(shí)即停,乙比甲遲
分鐘出發(fā),當(dāng)乙出發(fā)
分鐘后,求此時(shí)甲乙兩人之間的距離;
(2)設(shè)
,乙丙之間的距離是甲乙之間距離的
倍,且
,請(qǐng)將甲
乙之間的距離
表示為
的函數(shù),并求甲乙之間的最小距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),向量
=(1,7),
=(5,1),
=(2,1),點(diǎn)M為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng)
取最小值時(shí),求向量
的坐標(biāo);
(2)在點(diǎn)M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過橢圓M:
(a>b>0)右焦點(diǎn)的直線x+y﹣
=0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為
.
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017江西南昌十所重點(diǎn)二!選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:
.
(Ⅰ)求曲線C1和C2的直角坐標(biāo)方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點(diǎn)?如果有,說明公共點(diǎn)的個(gè)數(shù);如果沒有,請(qǐng)說明理由;
(Ⅲ)設(shè)
是曲線C1上任意一點(diǎn),請(qǐng)直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3an , 求證:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且![]()
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱錐P-ABCD的體積為
,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+
),則下面結(jié)論正確的是
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個(gè)單位長(zhǎng)度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個(gè)單位長(zhǎng)度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個(gè)單位長(zhǎng)度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個(gè)單位長(zhǎng)度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
=lnx+ax2+(2a+1)x.
(1)討論
的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com