某加油站擬造如圖所示的鐵皮儲油罐(不計(jì)厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,
(
為圓柱的高,
為球的半徑,
).假設(shè)該儲油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為
千元,半球形部分每平方米建造費(fèi)用為3千元.設(shè)該儲油罐的建造費(fèi)用為
千元.
(1)寫出
關(guān)于
的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費(fèi)用最小時(shí)的
的值.![]()
(1)
,
(2)
.
解析試題分析:(1)求實(shí)際問題函數(shù)解析式,關(guān)鍵正確理解題意,列出正確的等量關(guān)系,明確自變量取值范圍. 儲油罐的建造費(fèi)用等于圓柱形部分建造費(fèi)用與半球形部分建造費(fèi)用之和,
由
得:
,(2)所研究函數(shù)
是一個(gè)關(guān)于
的一元二次函數(shù),求其最值關(guān)鍵在于研究對稱軸
與定義區(qū)間
之間位置關(guān)系,![]()
上是增函數(shù),所以當(dāng)
時(shí),儲油罐的建造費(fèi)用最小.
[解] :(1)
3分
(
) 6分
(2)
8分
上是增函數(shù) 12分
所以當(dāng)
時(shí),儲油罐的建造費(fèi)用最小. 14分
考點(diǎn):函數(shù)解析式,二次函數(shù)最值
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/f4/2/vyc221.png" style="vertical-align:middle;" />,關(guān)于
的不等式
的解集為
,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品時(shí),總利潤最高?(總利潤=總銷售額-總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
定義在
上,對任意的
,
,且
.
(1)求
,并證明:
;
(2)若
單調(diào),且
.設(shè)向量
,對任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
都是實(shí)數(shù),且
.
(1)求不等式
的解集;
(2)若
對滿足條件的所有實(shí)數(shù)
都成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和
,數(shù)列
滿足
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)
,若在定義域內(nèi)存在實(shí)數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(1)已知函數(shù)![]()
,試判斷
是否為“局部奇函數(shù)”?并說明理由;
(2)若
為定義域
上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com