【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分?jǐn)?shù)為
,
,
,
的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在
的學(xué)生中應(yīng)抽取多少人?
【答案】(1)
(2)230,
(3)5人
【解析】試題分析:(1)根據(jù)直方圖求出x的值即可;
(2)根據(jù)直方圖求出眾數(shù),設(shè)中位數(shù)為a,得到關(guān)于a的方程,解出即可;
(3)分別求出[220,240),[240,260),[260,280),[280,300]的用戶數(shù),根據(jù)分層抽樣求出滿足條件的概率即可.
試題解析:
(1)由
,
解得
,∴直方圖中
的值為
.
(2)理科綜合分?jǐn)?shù)的眾數(shù)是
,
∵
,
∴理科綜合分?jǐn)?shù)的中位數(shù)在
內(nèi),設(shè)中位數(shù)為
,
則
,
解得
,即中位數(shù)為
.
(3)理科綜合分?jǐn)?shù)在
的學(xué)生有
(位),
同理可求理科綜合分?jǐn)?shù)為
,
,
的用戶分別有15位、10位、5位,
故抽取比為
,
∴從理科綜合分?jǐn)?shù)在
的學(xué)生中應(yīng)抽取
人.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左,右焦點(diǎn)分別為F1, F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.
(1)求點(diǎn)M的軌跡
的方程;
(2)設(shè)
與x軸交于點(diǎn)Q,
上不同于點(diǎn)Q的兩點(diǎn)R、S,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)當(dāng)
時(shí),畫出函數(shù)
的大致圖像;
(2)當(dāng)
時(shí),根據(jù)圖像寫出函數(shù)
的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程
解的個(gè)數(shù).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的右焦點(diǎn)為
,不垂直
軸且不過
點(diǎn)的直線
與橢圓
相交于
兩點(diǎn).
(1)若直線
經(jīng)過點(diǎn)
,則直線
、
的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(2)如果
,原點(diǎn)到直線
的距離為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是兩個(gè)獨(dú)立的轉(zhuǎn)盤(A)、(B),在兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤進(jìn)行游戲,規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤待指針停下(當(dāng)兩個(gè)轉(zhuǎn)盤中任意一個(gè)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無效,重新開始),記轉(zhuǎn)盤(A)指針?biāo)鶎?duì)的區(qū)域?yàn)閤,轉(zhuǎn)盤(B)指針?biāo)鶎?duì)的區(qū)域?yàn)閥,x、y∈{1,2,3},設(shè)x+y的值為ξ. ![]()
(1)求x<2且y>1的概率;
(2)求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間
上的最大值和最小值及相應(yīng)的x值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且在區(qū)間(﹣∞,0)是單調(diào)遞增的,若S1=
x2dx,S2=
dx,S3=
exdx,則f(S1),f(S2),f(S3)的大小關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1:
+y2=1(m>1)與雙曲線C2:
﹣y2=1(n>0)的焦點(diǎn)重合,e1 , e2分別為C1 , C2的離心率,則( )
A.m>n且e1e2>1
B.m>n且e1e2<1
C.m<n且e1e2>1
D.m<n且e1e2<1
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com