【題目】AB為過拋物線焦點F的弦,P為AB中點,A、B、P在準線l上射影分別為M、N、Q,則下列命題:
以AB為直徑作圓,則此圓與準線l相交;
;
;
;
、O、N三點共線
為原點
,正確的是______ .
【答案】②③④⑤
【解析】
根據拋物線的定義,可知AP+BP=AM+BN,從而
,所以以AB為直徑作圓則此圓與準線l相切,故可判斷①錯,③對;由AP=AF可知∠AMF=∠AFM,同理∠BFN=∠BNF,利用AM∥BN,可得MF⊥NF,從而可判斷②④正確;
對于 ⑤,不妨設拋物線方程為y2=2px,直線AB:
,從而可證明kOA=kON,故可判斷.
解:由題意,AP+BP=AM+BN
∴
,∴以AB為直徑作圓則此圓與準線l相切,故①錯,③對;
由AP=AF可知∠AMF=∠AFM,同理∠BFN=∠BNF,利用AM∥BN,可得MF⊥NF,從而②④正確;
對于 ⑤,不妨設拋物線方程為y2=2px,直線AB:![]()
聯立可得y2﹣2kpy﹣p2=0
設
,
,則![]()
∴
,![]()
∵y1y2=﹣p2,∴kOA=kON,故⑤正確
故答案為②③④⑤
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元.設該公司的儀器月產量為
臺,當月產量不超過400臺時,總收益為
元,當月產量超過400臺時,總收益為
元.(注:總收益=總成本+利潤)
(1)將利潤表示為月產量
的函數
;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過函數性質的學習,我們知道:“函數
的圖象關于
軸成軸對稱圖形”的充要條件是“
為偶函數”.
(1)若
為偶函數,且當
時,
,求
的解析式,并求不等式
的解集;
(2)某數學學習小組針對上述結論進行探究,得到一個真命題:“函數
的圖象關于直線
成軸對稱圖形”的充要條件是“
為偶函數”.若函數
的圖象關于直線
對稱,且當
時,
.
(i)求
的解析式;
(ii)求不等式
的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(1)求
的單調區間;
(2)若
圖像上任意一點
處的切線的斜率
,求
的取值范圍;
(3)若對于區間
上任意兩個不相等的實數
都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )
A.
B. π C. 2 D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-
中,
平面ABC,D,E,F,G分別為
,AC,
,
的中點,AB=BC=
,AC=
=2.
![]()
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,焦距為
.斜率為k的直線l與橢圓M有兩個不同的交點A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)設
,直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.若C,D和點
共線,求k.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com