【題目】已知兩個(gè)不共線的向量
滿足
,
,
.
(1)若
與
垂直,求
的值;
(2)當(dāng)
時(shí),若存在兩個(gè)不同的
使得
成立,求正數(shù)
的取值范圍.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)已知
與
垂直,所以以
,變形得
,由兩向量的坐標(biāo)可求得兩向量的模分別為
,
,代入上式可得
,求得
.求向量的模,應(yīng)先求向量的平方。所以
,故
. (2)由條件
,得
,整理得
,即
,用向量坐標(biāo)表示數(shù)量積得
,用輔助角公式得
. 由
得
,又
要有兩解,結(jié)合正弦函數(shù)圖象可得,
,所以
,即
,解一元二次不等式,又因?yàn)?/span>
,所以
.
試題解析:解:(1)由條件知
,
,又
與
垂直,
所以
,所以
.
所以
,故
.
(2)由
,得
,
即
,
即
,
,
所以
.
由
得
,又
要有兩解,結(jié)合三角函數(shù)圖象可得,
,即
,又因?yàn)?/span>
,所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個(gè)命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點(diǎn),則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax﹣2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x﹣k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市隨機(jī)抽取一年內(nèi)100 天的空氣質(zhì)量指數(shù)(AQI)的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 20 | 15 |
(1)若本次抽取的樣本數(shù)據(jù)有30 天是在供暖季,其中有8 天為嚴(yán)重污染.根據(jù)提
供的統(tǒng)計(jì)數(shù)據(jù),完成下面的2×2 列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該城市本年的
空氣嚴(yán)重污染與供暖有關(guān)”?
非重度污染 | 嚴(yán)重污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
(2)已知某企業(yè)每天的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x 的關(guān)系式為y=
試估計(jì)該企業(yè)一個(gè)月(按30 天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
參考公式:K2=
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.若曲線
在點(diǎn)
處的切線方程為
(
為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
在(0,+
)上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于
的不等式
.
(1)當(dāng)
時(shí),解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.若曲線
在點(diǎn)
處的切線方程為
(
為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
在(0,+
)上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD=
,AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn). ![]()
(1)證明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B為60°,求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,離心率為
. (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實(shí)數(shù)m的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com