【題目】如下圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),
![]()
(1)在圖中作出線段AB以二四象限的角平分線為對(duì)稱軸的對(duì)稱線段CD,并直接寫出四邊形ABDC的面積為 ;
(2)若點(diǎn)C為格點(diǎn)(橫縱坐標(biāo)均為整數(shù)),且AB⊥OC,且AB=OC,作出線段OC;并寫出C點(diǎn)坐標(biāo)為 .
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,AB=AC,∠B=36°,D、E是BC上兩點(diǎn),且∠ADE=∠AED=2∠BAD,則圖中等腰三角形共有( )
![]()
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出如下收費(fèi)標(biāo)準(zhǔn):
如果人數(shù)不超過
人,人均旅游費(fèi)用為
元;
如果人數(shù)超過
人,每增加
人,人均旅游費(fèi)用降低
元,但人均旅游費(fèi)用不得低于
元.
某單位共付給該旅行社旅游費(fèi)用
元,問:該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE⊥AB交BC于點(diǎn)E,∠BAC=120°,AE=3cm,則BC的長(zhǎng)是_______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
中,
,以
為直徑的
交
于
,
交
于
,
交
于
,點(diǎn)
為
延長(zhǎng)線上的一點(diǎn),
延長(zhǎng)交
于
,
.小華得出
個(gè)結(jié)論:①
;②
;③
.
其中正確的是( )
![]()
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,以
為直徑的半圓
與
交于點(diǎn)
,與
交于點(diǎn)
,連接
,過點(diǎn)
作
,垂足為點(diǎn)
.
![]()
求證:
;
判斷
與
的位置關(guān)系,并說明理由;
若
的直徑為
,
,求
的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)有一等腰Rt△ABC,∠ACB=90°,點(diǎn)A在直線l上.過點(diǎn)C作CE⊥1于點(diǎn)E,過點(diǎn)B作BF⊥l于點(diǎn)F,測(cè)量得CE=3,BF=2,則AF的長(zhǎng)為( )
![]()
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A(0,6)的直線AB與直線OC相交于點(diǎn)C(2,4)動(dòng)點(diǎn)P沿路線O→C→B運(yùn)動(dòng).(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的
時(shí),求出這時(shí)點(diǎn)P的坐標(biāo);(3)是否存在點(diǎn)P,使△OBP是直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=x+1的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B(0,﹣1),與x軸以及y=x+1的圖象分別交于點(diǎn)C、D,且點(diǎn)D的坐標(biāo)為(1,n),
![]()
(1)求一次函數(shù)y=kx+b的函數(shù)關(guān)系式
(2)求四邊形AOCD的面積;
(3)是否存在y軸上的點(diǎn)P,使得以BD為底的△PBD等腰三角形?若存在求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com