【題目】如圖,在矩形
中,
,動點
從點
出發(fā),沿射線
以每秒
個單位的速度向點
方向運動,連接
,把
沿
翻折,得到
.設點
的運動時間為
.
![]()
(1)若
,當
三點在同一直線上時,求
的值;
(2)若點
到直線
的距離等于
,求
的值;
(3)若
的最小值為
,直接寫出
的值.
【答案】(1)t=3 -
;(2)t=
;(3)m=
.
【解析】
(1)如圖1中,設PD=t.則PA=3-t.首先證明BP=BC=6,在Rt△ABP中利用勾股定理即可解決問題;
(2)通過添加輔助線,構造直角三角形再解決問題;
(3)當點A,點E,點C在同一條直線上時,AE最短,利用勾股定理求值即可.
解:(1)如圖1中,設PD=t.則PA=3-t
![]()
∵P、B、E共線,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=3,
在Rt△ABP中,
∵AB2+AP2=BP2,
∴22+(3-t)2=32,
∴t=3 +
(舍去)或3-![]()
∴當t=3 -
時,
三點在同一直線上.
(2) 過點E作MN⊥BC,交AD于點M
![]()
∵四邊形ABCD是矩形,MN⊥BC
∴MN⊥AD
∵點
到直線
的距離等于![]()
∴EN=1
∵MN=AB=2, EC=CD=2,
∴EN=MN-EN=2-1=1
∴在Rt△ENC中,NC=
∴MD= NC=![]()
∵由題意得:MP=MD-PD=
-t,ME=MN-EN=2-1=1,EP=PD=t
∴在Rt△MPE中,![]()
即:
,解得:t=
(3)如圖,當點A,點E,點C在同一條直線上時,AE最短.
![]()
由題意得:
=
,EC=CD=AB=2
∴在Rt△ABC中,![]()
∴m=AD=BC=
.
科目:初中數學 來源: 題型:
【題目】完成下列推理結論及推理說明:
如圖,已知∠
+∠
=180°,∠
=∠
.求證:∠
=∠
.
證明:∵∠
+∠
=180°(已知)
∴
∥
( )
∴∠
= ( )
又∵∠
=∠
(已知)
= (等量代換)
∴
∥
( )
∴∠
=∠
( )
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著教育信息化的發(fā)展,學生的學習方式日益增多. 教師為了指導學生有幸效利用網絡進行學習,對學生進行了隨機問卷調查(問卷調查表如圖所示),并用調查結果繪制了圖1、圖2兩幅統計圖(均不完整),請根據統計圖解答以下問題:
![]()
![]()
(1)本次接受問卷調查的學生共有 人;在扇形統計圖中“D”選項所占的百分比為 ;
(2)扇形統計圖中,“B”選項所對應扇形圓心角為 度;
(3)請補全條形統計圖;
(4)若該校共有1200名學生,請你估計該校學生課外利用網絡學習的時間在“A”選項的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“六一”前夕,某玩具經銷商用去2350元購進A、B、C三種新型的電動玩具共50套,并且購進的三種玩具都不少于10套,設購進A種玩具x套,B種玩具y套,三種電動玩具的進價和售價如表所示
型 號 | A | B | C |
進價(元/套) | 40 | 55 | 50 |
售價(元/套) | 50 | 80 | 65 |
(1)用含x、y的代數式表示購進C種玩具的套數;
(2)求y與x之間的函數關系式;
(3)假設所購進的這三種玩具能全部賣出,且在購銷這種玩具的過程中需要另外支出各種費用200元.
①求出利潤P(元)與x(套)之間的函數關系式;②求出利潤的最大值,并寫出此時三種玩具各多少套.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,ABC的頂點都在格點上,在平面直角坐標系。
![]()
⑴寫出點的坐標:點A ,點B ,點C .
⑵將ABC向右平移7個單位,再向下平移3個單位,得到A1B1C1,試在圖上畫出A1B1C1的圖形;
⑶求ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:我們知道
的幾何意義是在數軸上數
對應的點與原點的距離,即
,也就是說,
表示在數軸上數
與數
對應點之間的距離.這個結論可以推廣為:
表示在數軸上數
與
對應點之間的距離.
例
已知
,求
的值.
解:在數軸上與原點距離為
的點的對應數為
和
,即
的值為
和
.
例
已知
,求
的值.
解:在數軸上與
的距離為
點的對應數為
和
,即
的值為
和
.
仿照閱讀材料的解法,解決下列問題:
(1)已知
,求
的值;
(2)已知
,求
的值;
(3)若數軸上表示
的點在
與
之間,則
的值為_________;
(4)當
滿足_________時,則
的值最小,最小值是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位招聘員工,采取筆試與面試相結合的方式,兩項成績的原始分均為100分,前6名選手的得分如下:
![]()
根據規(guī)定,筆試成績和面試成績按一定的百分比折合成綜合成績(綜合成績的滿分仍為100分)
(1)這6名選手筆試成績的平均數是_____分,中位數是_____分,眾數是______分.
(2)現已知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績的百分比各為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
,一枚質地均勻的正四面體骰子,它有四個面并分別標有數字
,
,
,
,如圖
,正方形
頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖
起跳,第一次擲得
,就順時針連續(xù)跳
個邊長,落到圈
;若第二次擲得
,就從
開始順時針連續(xù)跳
個邊長,落到圈
;
設游戲者從圈
起跳.
(
)嘉嘉隨機擲一次骰子,求落回到圈
的概率
.
(
)淇淇隨機擲兩次骰子,用列表法求最后落回到圈
的概率
,并指出她與嘉嘉落回到圈
的可能性一樣嗎?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC三個頂點的坐標分別是A(2,2)、B(2,0),C(4,2).![]()
(1)在平面直角坐標系中畫出△ABC;
(2)若將(1)中的△ABC平移,使點B的對應點B′坐標為(6,2),畫出平移后的△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com