題目列表(包括答案和解析)
把函數
的圖象按向量
平移得到函數
的圖象.
(1)求函數
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設
上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
,便可以得到結論。第二問中,令
,然后求導,利用最小值大于零得到。
(1)解:設
上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調遞增.……10分
故
,即![]()
| k |
| 5 |
| π |
| 3 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
|
| 3 |
| 3 |
|
| π |
| 4 |
| fn(θ) | fn(θ)的 單調性 |
fn(θ)的最小值及取得最小值時θ的取值 | fn(θ)的最大值及取得最大值時θ的取值 |
| n=1 | |||
| n=2 | |||
| n=3 | |||
| n=4 | |||
| n=5 | |||
| n=6 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com