科目: 來源: 題型:
【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為
;
當P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構成的曲線
定義為曲線C的“伴隨曲線”.現有下列命題:
①若點A的“伴隨點”是點
,則點
的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關于x軸對稱,則其“伴隨曲線”
關于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,
、
是兩個垃圾中轉站,
在
的正東方向
千米處,
的南面為居民生活區.為了妥善處理生活垃圾,政府決定在
的北面建一個垃圾發電廠
.垃圾發電廠
的選址擬滿足以下兩個要求(
、
、
可看成三個點):①垃圾發電廠到兩個垃圾中轉站的距離與它們每天集中的生活垃圾量成反比,比例系數相同;②垃圾發電廠應盡量遠離居民區(這里參考的指標是點
到直線
的距離要盡可能大).現估測得
、
兩個中轉站每天集中的生活垃圾量分別約為
噸和
噸.設
.
![]()
(1)求
(用
的表達式表示);
(2)垃圾發電廠該如何選址才能同時滿足上述要求?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項數列
,
滿足:對任意正整數
,都有
,
,
成等差數列,
,
,
成等比數列,且
,
.
(Ⅰ)求證:數列
是等差數列;
(Ⅱ)求數列
,
的通項公式;
(Ⅲ)設
=
+
+…+
,如果對任意的正整數
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在
上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.
(1)設
,判斷
在
上是否為有界函數,若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數
在
上是以
為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項數列
,
滿足:對任意正整數
,都有
,
,
成等差數列,
,
,
成等比數列,且
,
.
(Ⅰ)求證:數列
是等差數列;
(Ⅱ)求數列
,
的通項公式;
(Ⅲ)設
=
+
+…+
,如果對任意的正整數
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義
上的函數
,若滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.
(1)設
,判斷
在
上是否有界函數,若是,請說明理由,并寫出
的所有上界的值的集合,若不是,也請說明理由;
(2)若函數
在
上是以3為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩人同時參加一次數學測試,共有20道選擇題,每題均有4個選項,答對得3分,答錯或不答得0分,甲和乙都解答了所有的試題,經比較,他們只有2道題的選項不同,如果甲最終的得分為54分,那么乙的所有可能的得分值組成的集合為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓
:
(
)的右焦點為
,短軸的一個端點
到
的距離等于焦距.
![]()
(1)求橢圓
的標準方程;
(2)設
、
是四條直線
,
所圍成的矩形在第一、第二象限的兩個頂點,
是橢圓
上任意一點,若
,求證:
為定值;
(3)過點
的直線
與橢圓
交于不同的兩點
、
,且滿足△
與△
的面積的比值為
,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在
上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.
(1)設
,判斷
在
上是否為有界函數,若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數
在
上是以
為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com