科目: 來源: 題型:解答題
函數f(x)=6cos2
+
sin ωx-3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形.![]()
(1)求ω的值及函數f(x)的值域;
(2)若f(x0)=
,且x0∈
,求f(x0+1)的值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知向量m=(sin x,1),n=
,函數f(x)=(m+n)·m.
(1)求函數f(x)的最小正周期T及單調遞增區間;
(2)已知a,b,c分別為△ABC內角A,B,C的對邊,A為銳角,a=2
,c=4,且f(A)是函數f(x)在
上的最大值,求△ABC的面積S.
查看答案和解析>>
科目: 來源: 題型:解答題
(2013·佛山模擬)在平面直角坐標系xOy中,以Ox為始邊,角α的終邊與單位圓O的交點B在第一象限,已知A(-1,3).
(1)若OA⊥OB,求tan α的值;
(2)若B點橫坐標為
,求S△AOB.
查看答案和解析>>
科目: 來源: 題型:解答題
已知向量a=(cosωx,sinωx),b=(cosωx,
cosωx),其中0<ω<2,函數
,其圖象的一條對稱軸為
。
(1)求函數的表達式及單調遞增區間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,S△ABC為其面積,若
,b=1,
,求a的值。
查看答案和解析>>
科目: 來源: 題型:解答題
設向量![]()
,定義一種向量積
.
已知向量
,
,點
為
的圖象上的動點,點![]()
為
的圖象上的動點,且滿足
(其中
為坐標原點).
(1)請用
表示
;
(2)求
的表達式并求它的周期;
(3)把函數
圖象上各點的橫坐標縮小為原來的
倍(縱坐標不變),得到函數
的圖象.設函數![]()
![]()
,試討論函數
在區間
內的零點個數.
查看答案和解析>>
科目: 來源: 題型:解答題
若函數
,非零向量
,我們稱
為函數
的“相伴向量”,
為向量
的“相伴函數”.
(1)已知函數
的最小正周期為
,求函數
的“相伴向量”;
(2)記向量
的“相伴函數”為
,將
圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象上所有點向左平移
個單位長度,得到函數
,若
,求
的值;
(3)對于函數
,是否存在“相伴向量”?若存在,求出
“相伴向量”;
若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數y=3sin
(1)用五點法在給定的坐標系中作出函數一個周期的圖象;
(2)求此函數的振幅、周期和初相;
(3)求此函數圖象的對稱軸方程、對稱中心.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com