【題目】已知
,
且
,圓
,點(diǎn)
,
是圓
上的動點(diǎn),線段
的垂直平分線交直線
于點(diǎn)
,點(diǎn)
的軌跡為曲線
.
(1)討論曲線
的形狀,并求其方程;
(2)若
,且
面積的最大值為
,直線
過點(diǎn)
且不垂直于坐標(biāo)軸,
與曲線
交于
,點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
.求證:直線
過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(1)當(dāng)
時(shí),曲線
是橢圓,其方程為
;當(dāng)
時(shí)曲線
是雙曲線,其方程為
;(2)證明詳見解析,定點(diǎn)坐標(biāo)
.
【解析】
(1)分點(diǎn)
在圓
內(nèi)和點(diǎn)
在圓
外兩種情況討論,兩者都可以利用圓錐曲線的定義得到相應(yīng)的曲線方程.
(2)設(shè)
,
,則直線
與
軸交點(diǎn)的橫坐標(biāo)為
,聯(lián)立直線方程和橢圓方程,消去
后利用韋達(dá)定理化簡
后可得
為定值,從而可證直線
過定點(diǎn).
當(dāng)
時(shí),點(diǎn)
在圓
內(nèi),
,
故曲線
是以
為焦點(diǎn),以
為長軸長的橢圓,其方程為
.
當(dāng)
時(shí),點(diǎn)
在圓
外,
,
曲線
是以
為焦點(diǎn),以
為實(shí)軸長的雙曲線,其方程為
.
綜上,當(dāng)
時(shí),曲線
是橢圓,其方程為
;當(dāng)
時(shí)曲線
是雙曲線,其方程為
;
(2)由
面積有最大值為
知,曲線
只可能是橢圓,
由橢圓幾何性質(zhì)知,當(dāng)
位于短軸端點(diǎn)時(shí)其面積有最大值,因
,
故其短半軸長為
,又因焦距為2,
故曲線
的方程為
.
設(shè)
,
,則
,
聯(lián)立
,消去
得:
,
,
直線
,
由橢圓的對稱性知,若直線
過定點(diǎn)
,則該定點(diǎn)
必在
軸上,
故令
得:
,
所以直線
過定點(diǎn)
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線
上的點(diǎn)按坐標(biāo)變換
得到曲線
,以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)
點(diǎn)的極坐標(biāo)為
.
(1)求曲線
的極坐標(biāo)方程;
(2)若過點(diǎn)
且傾斜角為
的直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加
項(xiàng)目生產(chǎn)的工人為
人,平均每人每年創(chuàng)造利潤
萬元.根據(jù)現(xiàn)實(shí)的需要,從
項(xiàng)目中調(diào)出
人參與
項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤
萬元(
),
項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高![]()
(1)若要保證
項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來
名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加
項(xiàng)目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從
項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的
時(shí),才能使得
項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)國家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù),2019年11月全國
(居民消費(fèi)價(jià)格指數(shù)),同比上漲
,
上漲的主要因素是豬肉價(jià)格的上漲,豬肉加上其他畜肉影響
上漲3.27個(gè)百分點(diǎn).下圖是2019年11月
一籃子商品權(quán)重,根據(jù)該圖,下列四個(gè)結(jié)論正確的有______.
![]()
①
一籃子商品中權(quán)重最大的是居住
②
一籃子商品中吃穿住所占權(quán)重超過![]()
③豬肉在
一籃子商品中權(quán)重為![]()
④豬肉與其他禽肉在
一籃子商品中權(quán)重約為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市勞動部門堅(jiān)持就業(yè)優(yōu)先,釆取多項(xiàng)措施加快發(fā)展新興產(chǎn)業(yè),服務(wù)經(jīng)濟(jì),帶來大量就業(yè)崗位,據(jù)政府工作報(bào)告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個(gè)百分點(diǎn),處于近20年來的最低水平.
(1)現(xiàn)從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:
失業(yè) | 就業(yè) | 合計(jì) | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合計(jì) | 5 | 95 | 100 |
根據(jù)聯(lián)表判斷是否有99%的把握認(rèn)為失業(yè)與性別有關(guān)?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
(2)調(diào)查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營經(jīng)濟(jì),大型國企對就業(yè)支撐作用不斷增強(qiáng),其崗位比例為2∶5∶3,現(xiàn)要抽取一個(gè)樣本容量為50的樣本,則這三種崗位應(yīng)該各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)離心率為
的橢圓
的左、右焦點(diǎn)為
, 點(diǎn)P是E上一點(diǎn),
,
內(nèi)切圓的半徑為
.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線
上,A、B在橢圓E上,若矩形ABCD的周長為
, 求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),曲線
:
.以
為極點(diǎn),
軸的非負(fù)半軸為極軸,與直角坐標(biāo)系
取相同的長度單位,建立極坐標(biāo)系.
(1)求曲線
的極坐標(biāo)方程;
(2)射線
(
)與曲線
的異于極點(diǎn)的交點(diǎn)為
,與曲線
的交點(diǎn)為
,求
.
【答案】(1)
的極坐標(biāo)方程為
,
的極坐標(biāo)方程為
;(2)
.
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線
,再根據(jù)
將曲線
的
極坐標(biāo)方程;(2)將
代人曲線
的極坐標(biāo)方程,再根據(jù)
求
.
試題解析:(1)曲線
的參數(shù)方程
(
為參數(shù))
可化為普通方程
,
由
,可得曲線
的極坐標(biāo)方程為
,
曲線
的極坐標(biāo)方程為
.
(2)射線
(
)與曲線
的交點(diǎn)
的極徑為
,
射線
(
)與曲線
的交點(diǎn)
的極徑滿足
,解得
,
所以
.
【題型】解答題
【結(jié)束】
23
【題目】設(shè)函數(shù)
.
(1)設(shè)
的解集為
,求集合
;
(2)已知
為(1)中集合
中的最大整數(shù),且
(其中
,
,
為正實(shí)數(shù)),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畢達(dá)哥拉斯樹是由畢達(dá)哥拉斯根據(jù)“勾股定理”所畫出來的一個(gè)可以無限重復(fù)的圖形,也叫“勾股樹”,其是由一個(gè)等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹”,重復(fù)圖1的作法,得到第2代“勾股樹”(如圖2),如此繼續(xù).若“勾股樹”上共得到8191個(gè)正方形,設(shè)初始正方形的邊長為1,則最小正方形的邊長為( )
![]()
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形
中,
,
;如圖,將
沿
邊折起,連結(jié)
,使
,求證:
![]()
(1)平面
平面
;
(2)若
為棱
上一點(diǎn),且
與平面
所成角的正弦值為
,求二面角
的大小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com