【題目】已知橢圓
過點
,
,其上頂點到直線
的距離為2,過點
的直線
與
,
軸的交點分別為
、
,且
.
![]()
(1)證明:
為定值;
(2)如上圖所示,若
,
關于原點對稱,
,
關于原點對稱,且
,求四邊形
面積的最大值.
【答案】(1)證明見解析;(2)
.
【解析】
(1)其上頂點
到直線
的距離為2,求出
,點
代入橢圓方程,可求出橢圓方程,設經過點
的直線方程為:
,可得
,
.利用
,可得
,利用兩點之間的距離公式可得
;
(2)由(1)得直線
的方程為
,與橢圓方程聯立求出
,由點到直線距離公式,求出
到直線
距離,求出四邊形
面積的關于
的表達式,結合
關系,由基本不等式求出最大值.
(1)其上頂點
到直線
的距離為2,
,解得
.
又橢圓
過點
,
,解得
.
∴橢圓的標準方程為:
.
點
在橢圓上,
.
設經過點
的直線方程為:
,
可得
,
.
,
即
.
為定值.
(2)由(1)得直線
斜率為
,
方程為
,
即
,
,
聯立
解得
,
,
點
到直線
的距離為
,
![]()
![]()
當且僅當
,即
時,等號成立,
,
四邊形
面積的最大值為
.
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占
,而男生有10人表示對冰球運動沒有興趣額.
(1)完成
列聯表,并回答能否有
的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調查的女生中有5名數學系的學生,其中3名對冰球有興趣,現在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的左頂點為
,右焦點為
,斜率為1的直線與橢圓
交于
,
兩點,且
,其中
為坐標原點.
(1)求橢圓
的標準方程;
(2)設過點
且與直線
平行的直線與橢圓
交于
,
兩點,若點
滿足
,且
與橢圓
的另一個交點為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,已知曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線
的普通方程和直線
的直角坐標方程;
(2)若射線
的極坐標方程為
(
).設
與
相交于點
,
與
相交于點
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬
中,側棱
底面
,且
,
為
中點,點
在
上,且
平面
,連接
,
.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(Ⅲ)已知
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓
=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足
=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱
各條棱的長度均相等,
為
的中點,
分別是線段
和線段
的動點(含端點),且滿足
,當
運動時,下列結論中不正確的是
![]()
A. 在
內總存在與平面
平行的線段
B. 平面
平面![]()
C. 三棱錐
的體積為定值
D.
可能為直角三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為4的正方形
中,
是
的中點,
是
的中點,現將三角形
沿
翻折成如圖2所示的五棱錐
.
![]()
(1)求證:
平面
;
(2)若平面
平面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com