已知等比數列{an}的前n項和Sn=2n-a,n∈N*.設公差不為零的等差數列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數列.
(Ⅰ)求a的值及數列{bn}的通項公式;
(Ⅱ)設數列{log
an}的前n項和為Tn.求使Tn>bn的最小正整數n.
(Ⅰ)a=1,bn=8n-5;(Ⅱ)9.
解析試題分析:(Ⅰ)依據Sn=2n-a,根據數列的前n項和,求出數列{an}的通項公式,并且根據初始條件求出a=1,an=2n-1,再根據b2+5,b4+5,b8+5成等比數列,得出(b4+5)2=(b2+5)(b8+5),解得d=0(舍去),或d=8,從而求出{bn}的通項公式為bn=8n-5;(Ⅱ)由(Ⅰ)an=2n-1代入log
an=2(n-1),易知該數列是等差數列,根據等差數列的前n項和,求出Tn=
=n(n-1),而bn=8n-5,根據Tn>bn,n(n-1)>8n-5,解得n≥9,故所求n的最小正整數為9.
試題解析:
(Ⅰ)當n=1時,a1=S1=2-a;
當n≥2時,an=Sn-Sn-1=2n-1.
∵{an}為等比數列,
∴2-a=1,解得a=1.
∴an=2n-1.
設數列{bn}的公差為d,
∵b2+5,b4+5,b8+5成等比數列,
∴(b4+5)2=(b2+5)(b8+5),
又b1=3,
∴(8+3d)2=(8+d)(8+7d),
解得d=0(舍去),或d=8.
∴bn=8n-5.
(Ⅱ)由an=2n-1,得log
an=2(n-1),
∴{log
an}是以0為首項,2為公差的等差數列,
∴Tn=
=n(n-1).
由bn=8n-5,Tn>bn,得
n(n-1)>8n-5,即n2-9n+5>0,
∵n∈N*,∴n≥9.
故所求n的最小正整數為9.
考點:1.數列通項公式的求解;2.等差、等比數列的性質應用.
科目:高中數學 來源: 題型:解答題
已知數列
的首項
其中
,
令集合
.
(Ⅰ)若
,寫出集合
中的所有的元素;
(Ⅱ)若
,且數列
中恰好存在連續的7項構成等比數列,求
的所有可能取值構成的集合;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某企業為擴大生產規模,今年年初新購置了一條高性能的生產線,該生產線在使用過程中的設備維修、燃料和動力等消耗的費用(稱為設備的低劣化值)會逐年增加,第一年設備低劣化值是4萬元,從第二年到第七年,每年設備低劣化值均比上年增加2萬元,從第八年開始,每年設備低劣化值比上年增加25%.
(1)設第
年該生產線設備低劣化值為
,求
的表達式;
(2)若該生產線前
年設備低劣化平均值為
,當
達到或超過12萬元時,則當年需要更新生產線,試判斷第幾年需要更新該生產線,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com