【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設甲、乙、丙面試合格的概率分別是
,
,
,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數
的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點O,點E,F分別在AD,CD上,AE=CF,EF交BD于點H.將△DEF沿EF折到△D′EF的位置.
![]()
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE=
,OD′=2
,求五棱錐D′ABCFE的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數關系,有人根據函數圖象,提出了關于這兩個旅行者的如下信息:
![]()
①騎自行車者比騎摩托車者早出發3 h,晚到1 h;
②騎自行車者是變速運動,騎摩托車者是勻速運動;
③騎摩托車者在出發1.5 h后追上了騎自行車者;
④騎摩托車者在出發1.5 h后與騎自行車者速度一樣.
其中,正確信息的序號是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當范圍內,決定對這種食品生產廠家提供政府補貼,設這種食品的市場價格為x元/千克,政府補貼為t元/千克,根據市場調查,當16≤x≤24時,這種食品市場日供應量p萬千克與市場日需求量q萬千克近似地滿足關系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln
(16≤x≤24).當p=q時的市場價格稱為市場平衡價格.
(1)將政府補貼表示為市場平衡價格的函數,并求出函數的值域.
(2)為使市場平衡價格不高于每千克20元,政府補貼至少為每千克多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
x2-2aln x+(a-2)x,a∈R.
(1)當a=1時,求函數f(x)的圖象在點(1,f(1))處的切線方程.
(2)是否存在實數a,對任意的x1,x2∈(0,+∞)且x1≠x2有
>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了監控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態下生產的零件的尺寸服從正態分布
.
(1)假設生產狀態正常,記X表示一天內抽取的16個零件中其尺寸在
之外的零件數,求
;
(2)一天內抽檢零件中,如果出現了尺寸在
之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得
,
,其中
為抽取的第
個零件的尺寸,
.
用樣本平均數
作為
的估計值
,用樣本標準差
作為
的估計值
,利用估計值判斷是否需對當天的生產過程進行檢查?剔除
之外的數據,用剩下的數據估計
和
(精確到0.01).
附:若隨機變量
服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態度進行了調查,統計數據如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學習積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)判斷是否有
的把握認為學生的學習積極性與對待班級工作的態度有關系?
附:
, n=a+b+c+d.
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
如圖,四邊形
是正方形,△
與△
均是以
為直角頂點的等腰直角三角形,點
是
的中點,點
是邊
上的任意一點.
![]()
(1)求證:
;
(2)求二面角
的平面角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com