【題目】如圖,
是邊長為3的等邊三角形,四邊形
為正方形,平面
平面
.點
、
分別為
、
上的點,且
,點
為
上的一點,且
.
![]()
(Ⅰ)當
時,求證:
平面
;
(Ⅱ)當
時,求三棱錐
的體積.
科目:高中數學 來源: 題型:
【題目】(2018·長沙二模)在平面幾何中有如下結論:正三角形ABC的內切圓面積為S1,外接圓面積為S2,則
.推廣到空間可以得到類似結論:已知正四面體P-ABC的內切球體積為V1,外接球體積為V2,則
=________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果雙曲線的離心率e=
,則稱此雙曲線為黃金雙曲線.有以下幾個命題:①雙曲線
是黃金雙曲線;②雙曲線
是黃金雙曲線;③在雙曲線
(a>0,b>0)中,F1為左焦點,A2為右頂點,B1(0,b),若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;④在雙曲線
(a>0,b>0)中,過右焦點F2作實軸的垂線交雙曲線于M,N兩點,O為坐標原點,若∠MON=120°,則該雙曲線是黃金雙曲線.其中正確命題的序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
:
經過伸縮變換
后得到曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求出曲線
、
的參數方程;
(Ⅱ)若
、
分別是曲線
、
上的動點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①
;②
這兩個條件中任選-一個,補充在下面問題中,然后解答補充完整的題.
![]()
在
中,角
的對邊分別為
,已知 ,
.
(1)求
;
(2)如圖,
為邊
上一點,
,求
的面積
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com