【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當a=1時,解不等式f(x)>x+1;
(2)若存在實數(shù)x,使得f(x)
f(x+1),求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
是定義在R上的兩個周期函數(shù),
的周期為4,
的周期為2,且
是奇函數(shù).當
時,
,
,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程
有8個不同的實數(shù)根,則k的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
的圓心為
,直線l過點
且與x軸不重合,l交圓
于C,D兩點,過
作
的平行線,交
于點E.設(shè)點E的軌跡為
.
(1)求
的方程;
(2)直線
與
相切于點M,
與兩坐標軸的交點為A與B,直線
經(jīng)過點M且與
垂直,
與
的另一個交點為N,當
取得最小值時,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,已知橢圓
的焦距為4,且過點
.
(1)求橢圓
的方程
(2)設(shè)橢圓
的上頂點為
,右焦點為
,直線
與橢圓交于
、
兩點,問是否存在直線
,使得
為
的垂心,若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線
的方程為
,
的方程為
,
是一條經(jīng)過原點且斜率大于
的直線.
(1)以直角坐標系原點
為極點,
軸正方向為極軸建立極坐標系,求
與
的極坐標方程;
(2)若
與
的一個公共點
(異于點
),
與
的一個公共點為
,當
時,求
的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)當
時,討論
的單調(diào)性;
(2)設(shè)函數(shù)
,若存在不相等的實數(shù)
,
,使得
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
三個內(nèi)角
所對的邊分別是
,若
.
(1)求角
;
(2)若
的外接圓半徑為2,求
周長的最大值.
【答案】(1)
;(2)
.
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系
,再根據(jù)余弦定理求角
,(2)先根據(jù)正弦定理求邊,用角表示周長,根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得
,
∴
,∴
,即![]()
因為
,則
.
(2)由正弦定理![]()
∴
,
,
,
∴周長![]()
![]()
![]()
![]()
![]()
![]()
∵
,∴![]()
∴當
即
時![]()
∴當
時,
周長的最大值為
.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
![]()
其中:
,
, ![]()
![]()
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;(
的值精確到0.01)
(3)若規(guī)定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com