【題目】設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足
∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1=
;
p4:若復(fù)數(shù)z∈R,則
∈R.
其中的真命題為( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
【答案】B
【解析】解:若復(fù)數(shù)z滿足
∈R,則z∈R,故命題p1為真命題;
p2:復(fù)數(shù)z=i滿足z2=﹣1∈R,則zR,故命題p2為假命題;
p3:若復(fù)數(shù)z1=i,z2=2i滿足z1z2∈R,但z1≠
,故命題p3為假命題;
p4:若復(fù)數(shù)z∈R,則
=z∈R,故命題p4為真命題.
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用和復(fù)數(shù)的定義的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;形如
的數(shù)叫做復(fù)數(shù),
和
分別叫它的實(shí)部和虛部.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱曲線 y=f(x),y=g(x)為“平行曲線”,設(shè)f(x)=ex﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+∞)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)π的值:先請200名同學(xué),每人隨機(jī)寫下一個(gè)都小于1 的正實(shí)數(shù)對(x,y);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(x,y)的個(gè)數(shù)m;最后再根據(jù)統(tǒng)計(jì)數(shù)m來估計(jì)π的值.假如統(tǒng)計(jì)結(jié)果是m=56,那么可以估計(jì)π≈ . (用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體EABCDF的底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且
. ![]()
(Ⅰ)記線段BC的中點(diǎn)為K,在平面ABCD內(nèi)過點(diǎn)K作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線EB與平面ECF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對于霧霾天氣的研究也漸漸活躍起來,某研究機(jī)構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為
的霧霾天數(shù).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的圓心
在拋物線
上,圓
過原點(diǎn)且與拋物線的準(zhǔn)線相切.
(1)求該拋物線的方程;
(2)過拋物線焦點(diǎn)
的直線
交拋物線于
,
兩點(diǎn),分別在點(diǎn)
,
處作拋物線的兩條切線交于
點(diǎn),求三角形
面積的最小值及此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(Ⅰ)求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在海岸A處,發(fā)現(xiàn)北偏東
方向,距離A為
n mile的B處有一艘走私船,在A處北偏西
方向,距離A為2 n mile的C處有一艘緝私艇奉命以
n mile / h的速度追截走私船,此時(shí),走私船正以10 n mile / h的速度從B處向北偏東
方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間。(本題解題過程中請不要使用計(jì)算器,以保證數(shù)據(jù)的相對準(zhǔn)確和計(jì)算的方便)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com